MechaBunny19c's picture
End of training
718306f verified
|
raw
history blame
3.03 kB
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/wav2vec2-base-100k-voxpopuli
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: wav2vec2-base-100k-voxpopuli-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.87

wav2vec2-base-100k-voxpopuli-finetuned-gtzan

This model is a fine-tuned version of facebook/wav2vec2-base-100k-voxpopuli on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9034
  • Accuracy: 0.87

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1924 1.0 225 2.1487 0.27
1.8417 2.0 450 1.8767 0.38
1.6017 3.0 675 1.5778 0.51
1.3497 4.0 900 1.4785 0.4
1.2631 5.0 1125 1.3103 0.58
0.8172 6.0 1350 1.1736 0.63
1.1657 7.0 1575 0.9690 0.74
1.1711 8.0 1800 1.3609 0.63
0.5033 9.0 2025 0.7300 0.83
0.4104 10.0 2250 0.9866 0.72
0.318 11.0 2475 0.8159 0.81
0.1074 12.0 2700 0.8024 0.85
0.093 13.0 2925 0.8285 0.85
0.7407 14.0 3150 0.8591 0.87
0.027 15.0 3375 0.9574 0.84
0.4564 16.0 3600 0.9762 0.85
0.0198 17.0 3825 0.9204 0.85
0.5467 18.0 4050 0.8703 0.87
0.2644 19.0 4275 0.8855 0.87
0.013 20.0 4500 0.9034 0.87

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1