|
--- |
|
library_name: transformers |
|
license: cc-by-nc-4.0 |
|
base_model: facebook/wav2vec2-base-100k-voxpopuli |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- marsyas/gtzan |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: wav2vec2-base-100k-voxpopuli-finetuned-gtzan |
|
results: |
|
- task: |
|
name: Audio Classification |
|
type: audio-classification |
|
dataset: |
|
name: GTZAN |
|
type: marsyas/gtzan |
|
config: all |
|
split: train |
|
args: all |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.87 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-base-100k-voxpopuli-finetuned-gtzan |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-base-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-base-100k-voxpopuli) on the GTZAN dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9034 |
|
- Accuracy: 0.87 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 2.1924 | 1.0 | 225 | 2.1487 | 0.27 | |
|
| 1.8417 | 2.0 | 450 | 1.8767 | 0.38 | |
|
| 1.6017 | 3.0 | 675 | 1.5778 | 0.51 | |
|
| 1.3497 | 4.0 | 900 | 1.4785 | 0.4 | |
|
| 1.2631 | 5.0 | 1125 | 1.3103 | 0.58 | |
|
| 0.8172 | 6.0 | 1350 | 1.1736 | 0.63 | |
|
| 1.1657 | 7.0 | 1575 | 0.9690 | 0.74 | |
|
| 1.1711 | 8.0 | 1800 | 1.3609 | 0.63 | |
|
| 0.5033 | 9.0 | 2025 | 0.7300 | 0.83 | |
|
| 0.4104 | 10.0 | 2250 | 0.9866 | 0.72 | |
|
| 0.318 | 11.0 | 2475 | 0.8159 | 0.81 | |
|
| 0.1074 | 12.0 | 2700 | 0.8024 | 0.85 | |
|
| 0.093 | 13.0 | 2925 | 0.8285 | 0.85 | |
|
| 0.7407 | 14.0 | 3150 | 0.8591 | 0.87 | |
|
| 0.027 | 15.0 | 3375 | 0.9574 | 0.84 | |
|
| 0.4564 | 16.0 | 3600 | 0.9762 | 0.85 | |
|
| 0.0198 | 17.0 | 3825 | 0.9204 | 0.85 | |
|
| 0.5467 | 18.0 | 4050 | 0.8703 | 0.87 | |
|
| 0.2644 | 19.0 | 4275 | 0.8855 | 0.87 | |
|
| 0.013 | 20.0 | 4500 | 0.9034 | 0.87 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 3.0.0 |
|
- Tokenizers 0.19.1 |
|
|