Armenian-Text-Embeddings-1
Model Details
- Model Name: Armenian-Text-Embeddings-1
- Model Type: Text Embeddings for Armenian Language
- Base Model: intfloat/multilingual-e5-base
- Version: 1.0.0
- License: Apache 2.0
- Last Updated: November 2024
- Model Architecture: Transformer-based embeddings model
- Input: Armenian text
- Output: Dense vector embeddings
Quick Start
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained('Metric-AI/armenian-text-embeddings-1')
model = AutoModel.from_pretrained('Metric-AI/armenian-text-embeddings-1')
def average_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
# Each input text should start with "query: " or "passage: ", even for non-English texts.
# For tasks other than retrieval, you can simply use the "query: " prefix.
input_texts = [
'query: Ինչպե՞ս պատրաստել տոլմա', # How to make tolma
'query: Քանի՞ գրամ սպիտակուց է հարկավոր օրական', # How many grams of protein needed daily
"""passage: Տոլմայի բաղադրատոմս՝
Բաղադրիչներ՝
- 500գ աղացած միս
- 1 բաժակ բրինձ
- Խաղողի տերևներ
- 2 գլուխ սոխ
- Համեմունքներ՝ աղ, սև պղպեղ, քարի
Պատրաստման եղանակը՝
1. Միսը խառնել բրնձի, մանր կտրատած սոխի և համեմունքների հետ
2. Խաղողի տերևները լվանալ և թողնել տաք ջրի մեջ 10 րոպե
3. Լցոնել տերևները և դասավորել կաթսայի մեջ
4. Եփել դանդաղ կրակի վրա 45-60 րոպե""", # Detailed tolma recipe
"""passage: Սպիտակուցի օրական չափաբաժինը կախված է մարդու քաշից, սեռից և ֆիզիկական ակտիվությունից:
Միջին հաշվով, կանանց համար խորհուրդ է տրվում 46-50 գրամ սպիտակուց օրական:
Մարզիկների համար այս թիվը կարող է հասնել մինչև 1.6-2 գրամ մարմնի քաշի յուրաքանչյուր կիլոգրամի համար:
Հղիների համար պահանջվում է լրացուցիչ 25 գրամ սպիտակուց:
Սպիտակուցի հարուստ աղբյուրներ են՝
- Հավի միս (31գ/100գ)
- Ձու (13գ/100գ)
- Ոսպ (25գ/100գ)
- Մածուն (3.5գ/100գ)"""] # Detailed protein intake advice
# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
# normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:2] @ embeddings[2:].T) * 100
print(scores.tolist())
# [[83.96063232421875, 30.283924102783203], [32.504661560058594, 82.4246826171875]]
Support for Sentence Transformers
Below is an example for usage with sentence_transformers.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('Metric-AI/armenian-text-embeddings-1')
embeddings = model.encode(input_texts, normalize_embeddings=True)
Intended Use
Primary Intended Uses
- Retrieval-augmented generation (RAG)
- Semantic search in Armenian
- Document similarity computation
- Cross-lingual text understanding
- Text classification tasks
- Information retrieval
Training Data
Dataset Details
- Source: Reddit dataset with English-Armenian translations
- Size: 1.08M pairs of rows
- Content Type: Title and body text pairs
- Token Statistics:
- Training Set:
- Translated Title Tokens: 23,921,393
- Translated Body Tokens: 194,200,654
- Test Set:
- Translated Title Tokens: 242,443
- Translated Body Tokens: 1,946,164
- Training Set:
- Split Ratio: 99% train, 1% test
Training Procedure
Training Details
- Weight Averaging:
- Base model (multilingual-e5-base): 0.6 weight
- Fine-tuned model: 0.4 weight
- Training Duration: 2 days
- Hardware: 4 x NVIDIA A100 40GB GPUs
- Training Parameters:
- Epochs: 5
- Batch Size: 256 per GPU, (256*4 in total)
- Learning Rate: 5e-5
- Weight Decay: 0.01
- Warmup Steps: 1000
- Maximum Sequence Length: 128 tokens
- FP16 Training: Enabled
- Gradient Clipping: 1.0
Optimization Configuration
- Framework: DeepSpeed Stage 2
- Optimizer: AdamW with auto weight decay
- Mixed Precision: FP16 with dynamic loss scaling
- ZeRO Optimization: Stage 2 with:
- Allgather partitions
- Overlap communications
- Contiguous gradients
- Additional Features:
- Gradient checkpointing
- Tensor parallelism (size: 2)
Performance and Limitations
Capabilities
- Effective for semantic similarity tasks in Armenian
- Suitable for document classification and clustering
Limitations
- Performance may vary on domain-specific terminology
- May not capture Armenian-specific cultural contexts effectively
- Limited by the quality of training data translations
Known Biases
- May exhibit biases present in Reddit content
Environmental Impact
- Training Hardware: 4 x NVIDIA A100 40GB
- Training Duration: 48 hours
- Estimated Energy Consumption: 384 kWh (estimated based on A100 power consumption)
Ethical Considerations
- Data Privacy: Training data from public Reddit content
- Potential Misuse: Could be misused for content manipulation or spam
- Bias: May perpetuate social biases present in Reddit content
- Recommendations:
- Monitor system outputs for harmful content
- Implement content filtering for production use
- Regular bias assessment recommended
Technical Specifications
- Model Size: ~278M parameters (based on e5-base)
- Embedding Dimension: 384
- Max Sequence Length: 128 tokens
- Framework Compatibility:
- PyTorch
- Hugging Face Transformers
- DeepSpeed
Citation
@misc{armenian-text-embeddings-1,
author = {Spartak Bughdaryan, Zaruhi Navasardyan, Bagrat Minasyan, Hrant Davtyan},
title = {Armenian-Text-Embeddings-1: Enhanced Armenian Language Embeddings},
year = {2024},
howpublished = {\url{https://metric.am/blog/announcing-armenian-text-embeddings/}}
}
Additional Information
Base Model References
- multilingual-e5-base: https://huggingface.co/intfloat/multilingual-e5-base
Acknowledgments
- intfloat for the original multilingual-e5-base model
- Reddit community for the source content
- DeepSpeed team for optimization toolkit
Version History
- 1.0.0 (November 2024): Initial release
- Downloads last month
- 297
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Metric-AI/armenian-text-embeddings-1
Base model
intfloat/multilingual-e5-base