MiguelCosta/distilbert-1-finetuned-cisco

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 2.2723
  • Validation Loss: 2.4284
  • Epoch: 39

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -964, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'passive_serialization': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Epoch
4.4357 4.3213 0
4.1763 3.9111 1
3.8803 3.6751 2
3.7135 3.5458 3
3.5861 3.4489 4
3.5176 3.4323 5
3.4022 3.3658 6
3.3259 3.2113 7
3.2499 3.0623 8
3.2129 3.0298 9
3.1177 2.9181 10
3.0144 2.9550 11
2.9502 2.8758 12
2.9074 2.8674 13
2.8922 2.7877 14
2.8333 2.8283 15
2.7982 2.7717 16
2.7453 2.7578 17
2.6611 2.5425 18
2.6330 2.6145 19
2.5642 2.5415 20
2.5352 2.5437 21
2.4939 2.4214 22
2.4287 2.4882 23
2.4142 2.5091 24
2.3676 2.3997 25
2.3121 2.4515 26
2.3085 2.2349 27
2.2839 2.3205 28
2.3248 2.3273 29
2.2763 2.2583 30
2.2710 2.3896 31
2.2950 2.3224 32
2.3026 2.3910 33
2.3116 2.3255 34
2.2640 2.3186 35
2.2958 2.3332 36
2.3256 2.3646 37
2.2831 2.3751 38
2.2723 2.4284 39

Framework versions

  • Transformers 4.22.1
  • TensorFlow 2.8.2
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.