|
--- |
|
license: other |
|
license_name: qwen |
|
license_link: >- |
|
https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT |
|
language: |
|
- en |
|
- zh |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
inference: false |
|
tags: |
|
- llama |
|
- qwen |
|
- qwen1.5 |
|
- qwen2 |
|
--- |
|
This is the Mistral version of [Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) model by Alibaba Cloud. |
|
The original codebase can be found at: (https://github.com/hiyouga/LLaMA-Factory/blob/main/tests/llamafy_qwen.py). |
|
I have made modifications to make it compatible with qwen1.5. |
|
This model is converted with https://github.com/Minami-su/character_AI_open/blob/main/mistral_qwen2.py |
|
|
|
## special |
|
|
|
1.Before using this model, you need to modify modeling_mistral.py in transformers library |
|
|
|
2.vim /root/anaconda3/envs/train/lib/python3.9/site-packages/transformers/models/mistral/modeling_mistral.py |
|
|
|
3.find MistralAttention, |
|
|
|
4.modify q,k,v,o bias=False ----->, bias=config.attention_bias |
|
|
|
Before: |
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62d7f90b102d144db4b4245b/AKj_fwEoLUKWZ4mViYW-q.png) |
|
After: |
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62d7f90b102d144db4b4245b/A2gSwq9l6Zx8X1qegtgvE.png) |
|
|
|
|
|
## Differences between qwen2 mistral and qwen2 llamafy |
|
|
|
Compared to qwen2 llamafy,qwen2 mistral can use sliding window attention,qwen2 mistral is faster than qwen2 llamafy, and the context length is better |
|
|
|
|
|
Usage: |
|
|
|
```python |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer |
|
tokenizer = AutoTokenizer.from_pretrained("Minami-su/Qwen1.5-7B-Chat_mistral") |
|
model = AutoModelForCausalLM.from_pretrained("Minami-su/Qwen1.5-7B-Chat_mistral", torch_dtype="auto", device_map="auto") |
|
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
|
|
messages = [ |
|
{"role": "user", "content": "Who are you?"} |
|
] |
|
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") |
|
inputs = inputs.to("cuda") |
|
generate_ids = model.generate(inputs,max_length=32768, streamer=streamer) |
|
|
|
``` |
|
|
|
## Test |
|
load in 4bit |
|
``` |
|
hf-causal (pretrained=Qwen1.5-7B-Chat), limit: None, provide_description: False, num_fewshot: 0, batch_size: 8 |
|
| Task |Version| Metric |Value | |Stderr| |
|
|-------------|------:|--------|-----:|---|-----:| |
|
|arc_challenge| 0|acc |0.4155|± |0.0144| |
|
| | |acc_norm|0.4480|± |0.0145| |
|
|truthfulqa_mc| 1|mc1 |0.3513|± |0.0167| |
|
| | |mc2 |0.5165|± |0.0159| |
|
|winogrande | 0|acc |0.6330|± |0.0135| |
|
``` |
|
load in 4bit |
|
``` |
|
hf-causal (pretrained=Qwen1.5-7B-Chat_mistral), limit: None, provide_description: False, num_fewshot: 0, batch_size: 16 |
|
| Task |Version| Metric |Value | |Stderr| |
|
|-------------|------:|--------|-----:|---|-----:| |
|
|arc_challenge| 0|acc |0.4172|± |0.0144| |
|
| | |acc_norm|0.4480|± |0.0145| |
|
|truthfulqa_mc| 1|mc1 |0.3488|± |0.0167| |
|
| | |mc2 |0.5161|± |0.0159| |
|
|winogrande | 0|acc |0.6306|± |0.0136| |
|
``` |
|
``` |