{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f506afef280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f506afee4c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681676258815908844, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAQh25PrdWYb2UINM+Qh25PrdWYb2UINM+Qh25PrdWYb2UINM+Qh25PrdWYb2UINM+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAncvAvz8ymb5Ft42+nHqQv23i2L8cG4G+kyYiPs5Ps7/gyzW/4sP6Pjac477mr2S+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABCHbk+t1ZhvZQg0z7jZlw8tw8AvELpgTdCHbk+t1ZhvZQg0z7jZlw8tw8AvELpgTdCHbk+t1ZhvZQg0z7jZlw8tw8AvELpgTdCHbk+t1ZhvZQg0z7jZlw8tw8AvELpgTeUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.36155134 -0.05501434 0.41235793]\n [ 0.36155134 -0.05501434 0.41235793]\n [ 0.36155134 -0.05501434 0.41235793]\n [ 0.36155134 -0.05501434 0.41235793]]", "desired_goal": "[[-1.5062138 -0.29921147 -0.27678886]\n [-1.1287417 -1.69441 -0.25215995]\n [ 0.15835027 -1.400873 -0.71014214]\n [ 0.48977572 -0.44455117 -0.22332725]]", "observation": "[[ 3.61551344e-01 -5.50143383e-02 4.12357926e-01 1.34522645e-02\n -7.81624671e-03 1.54866175e-05]\n [ 3.61551344e-01 -5.50143383e-02 4.12357926e-01 1.34522645e-02\n -7.81624671e-03 1.54866175e-05]\n [ 3.61551344e-01 -5.50143383e-02 4.12357926e-01 1.34522645e-02\n -7.81624671e-03 1.54866175e-05]\n [ 3.61551344e-01 -5.50143383e-02 4.12357926e-01 1.34522645e-02\n -7.81624671e-03 1.54866175e-05]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjUubPGR0hr35GEA+g79hPWJBv7386pE+33ZQvQ6CwLzpnIg9CY4DvhDXQ709bmQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.01895692 -0.06565168 0.18759526]\n [ 0.05511428 -0.09338643 0.2849959 ]\n [-0.05089461 -0.02349951 0.06670553]\n [-0.12847151 -0.04781252 0.22307678]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIS7GjcajfAcCUhpRSlIwBbJRLMowBdJRHQKhNKW+oLoh1fZQoaAZoCWgPQwjk9zb92Y/hv5SGlFKUaBVLMmgWR0CoTOwAlv61dX2UKGgGaAloD0MI5/up8dLN87+UhpRSlGgVSzJoFkdAqEyuY+jdpXV9lChoBmgJaA9DCPBRf73CAuu/lIaUUpRoFUsyaBZHQKhMbcB2fTV1fZQoaAZoCWgPQwhiLxSwHYwAwJSGlFKUaBVLMmgWR0CoTlwS8J2MdX2UKGgGaAloD0MIUgslk1O7/7+UhpRSlGgVSzJoFkdAqE4fHLida3V9lChoBmgJaA9DCLDkKha/qf6/lIaUUpRoFUsyaBZHQKhN4ZXMhX91fZQoaAZoCWgPQwjQK556pMH0v5SGlFKUaBVLMmgWR0CoTaD8DSw4dX2UKGgGaAloD0MIluttMxVi+L+UhpRSlGgVSzJoFkdAqE+sINVinnV9lChoBmgJaA9DCBQhdTv76gfAlIaUUpRoFUsyaBZHQKhPbqwhW5p1fZQoaAZoCWgPQwiA12fO+lT2v5SGlFKUaBVLMmgWR0CoTzHcclw+dX2UKGgGaAloD0MISUvl7Qgn/b+UhpRSlGgVSzJoFkdAqE7xYDDCQHV9lChoBmgJaA9DCL4Ts14MpfG/lIaUUpRoFUsyaBZHQKhQxPTG5tp1fZQoaAZoCWgPQwgQkgVM4FYFwJSGlFKUaBVLMmgWR0CoUId38n/ldX2UKGgGaAloD0MIJUBNLVvr+b+UhpRSlGgVSzJoFkdAqFBJ13dKunV9lChoBmgJaA9DCMQKt3wkZf2/lIaUUpRoFUsyaBZHQKhQCVNYbKl1fZQoaAZoCWgPQwi0dtuF5rrpv5SGlFKUaBVLMmgWR0CoUd9PLxI8dX2UKGgGaAloD0MItp22RgSDAcCUhpRSlGgVSzJoFkdAqFGhyuIRAnV9lChoBmgJaA9DCK+zIf/MoATAlIaUUpRoFUsyaBZHQKhRZCuU2UB1fZQoaAZoCWgPQwil942vPTPxv5SGlFKUaBVLMmgWR0CoUSOK4x1xdX2UKGgGaAloD0MIu2JGeHuQ77+UhpRSlGgVSzJoFkdAqFL/q5byH3V9lChoBmgJaA9DCB8uOe6UzgnAlIaUUpRoFUsyaBZHQKhSwiUxEfF1fZQoaAZoCWgPQwjEBaBRurT8v5SGlFKUaBVLMmgWR0CoUoR/d69kdX2UKGgGaAloD0MIqn8QyZAj97+UhpRSlGgVSzJoFkdAqFJD5Kvmo3V9lChoBmgJaA9DCGB2Tx4W6uu/lIaUUpRoFUsyaBZHQKhUIIsyzol1fZQoaAZoCWgPQwiz0qQUdLvzv5SGlFKUaBVLMmgWR0CoU+LNwBHTdX2UKGgGaAloD0MIz04GR8kr9r+UhpRSlGgVSzJoFkdAqFOlNahYeXV9lChoBmgJaA9DCOpae5+qAgfAlIaUUpRoFUsyaBZHQKhTZK0UoKF1fZQoaAZoCWgPQwhh4/p3fUYHwJSGlFKUaBVLMmgWR0CoVTv4/NaAdX2UKGgGaAloD0MIu+8YHvvZ77+UhpRSlGgVSzJoFkdAqFT+d7OVxHV9lChoBmgJaA9DCLN9yFuu3gTAlIaUUpRoFUsyaBZHQKhUwNWEK3N1fZQoaAZoCWgPQwgroib6fBQAwJSGlFKUaBVLMmgWR0CoVIBIe5nUdX2UKGgGaAloD0MIlGjJ42lZAcCUhpRSlGgVSzJoFkdAqFZuRLbpNnV9lChoBmgJaA9DCNulDYelIQvAlIaUUpRoFUsyaBZHQKhWMKGcnVp1fZQoaAZoCWgPQwg3/686cmQAwJSGlFKUaBVLMmgWR0CoVfLgflp5dX2UKGgGaAloD0MIu7n4255g97+UhpRSlGgVSzJoFkdAqFWyFj/dZnV9lChoBmgJaA9DCFLuPsdHC/e/lIaUUpRoFUsyaBZHQKhXgx20Re11fZQoaAZoCWgPQwgyyF2EKaoHwJSGlFKUaBVLMmgWR0CoV0Wk8A7xdX2UKGgGaAloD0MIcJS8OsegAcCUhpRSlGgVSzJoFkdAqFcH003wTnV9lChoBmgJaA9DCNOFWP0RRvi/lIaUUpRoFUsyaBZHQKhWxzVc2R91fZQoaAZoCWgPQwhF2PD0Sln2v5SGlFKUaBVLMmgWR0CoWMbSZ0CBdX2UKGgGaAloD0MI0lRP5h/dC8CUhpRSlGgVSzJoFkdAqFiJbjcVQHV9lChoBmgJaA9DCBu4A3XKo/+/lIaUUpRoFUsyaBZHQKhYTLdvbXZ1fZQoaAZoCWgPQwhAvoQKDo8AwJSGlFKUaBVLMmgWR0CoWAwpON5udX2UKGgGaAloD0MIoE/kSdJVBsCUhpRSlGgVSzJoFkdAqFns1Q66rnV9lChoBmgJaA9DCBPXMa64+PO/lIaUUpRoFUsyaBZHQKhZr2/SH/N1fZQoaAZoCWgPQwgk7UYf84EJwJSGlFKUaBVLMmgWR0CoWXHo5ggHdX2UKGgGaAloD0MIvVZCd0ncAsCUhpRSlGgVSzJoFkdAqFkxeHBUJnV9lChoBmgJaA9DCLIOR1fpTgHAlIaUUpRoFUsyaBZHQKhbDteD3/R1fZQoaAZoCWgPQwjEz38PXrvjv5SGlFKUaBVLMmgWR0CoWtFijL0SdX2UKGgGaAloD0MIgA9eu7Sh8b+UhpRSlGgVSzJoFkdAqFqTp7kXDXV9lChoBmgJaA9DCCB8KNGShwPAlIaUUpRoFUsyaBZHQKhaUxbjcVR1fZQoaAZoCWgPQwhs7BLVW0P7v5SGlFKUaBVLMmgWR0CoXCLeyiVTdX2UKGgGaAloD0MI06QUdHsJ8L+UhpRSlGgVSzJoFkdAqFvliay8jHV9lChoBmgJaA9DCDqSy39IPwPAlIaUUpRoFUsyaBZHQKhbp9QXQ+l1fZQoaAZoCWgPQwinkZbK2xHtv5SGlFKUaBVLMmgWR0CoW2dH+ZPVdX2UKGgGaAloD0MIPdaMDHLXAcCUhpRSlGgVSzJoFkdAqF1EyWRigHV9lChoBmgJaA9DCO56aYoAp+K/lIaUUpRoFUsyaBZHQKhdBzq8lHB1fZQoaAZoCWgPQwjPh2cJMoL3v5SGlFKUaBVLMmgWR0CoXMmB4D9wdX2UKGgGaAloD0MIR+NQvws7AsCUhpRSlGgVSzJoFkdAqFyI4VARkHV9lChoBmgJaA9DCGzOwTOhSf6/lIaUUpRoFUsyaBZHQKhex02cawV1fZQoaAZoCWgPQwhH5/wUxwHzv5SGlFKUaBVLMmgWR0CoXoqkuYhMdX2UKGgGaAloD0MIj8TL07ki9L+UhpRSlGgVSzJoFkdAqF5N47ihnXV9lChoBmgJaA9DCD56w33klgDAlIaUUpRoFUsyaBZHQKheDiVB2Oh1fZQoaAZoCWgPQwjlCu9yEb8GwJSGlFKUaBVLMmgWR0CoYJnh86V/dX2UKGgGaAloD0MIuLHZkeo79b+UhpRSlGgVSzJoFkdAqGBdNnGsFXV9lChoBmgJaA9DCG1YU1kUdgLAlIaUUpRoFUsyaBZHQKhgIHIp6Qh1fZQoaAZoCWgPQwgAVkeOdAbwv5SGlFKUaBVLMmgWR0CoX+DjJdSmdX2UKGgGaAloD0MIPBVwz/Nn/7+UhpRSlGgVSzJoFkdAqGJ9Drqt5nV9lChoBmgJaA9DCG0Dd6BOmQLAlIaUUpRoFUsyaBZHQKhiQKpDNQl1fZQoaAZoCWgPQwglsaTcfQ70v5SGlFKUaBVLMmgWR0CoYgQhGH58dX2UKGgGaAloD0MIoQ+WsaHb/b+UhpRSlGgVSzJoFkdAqGHEg8r7O3V9lChoBmgJaA9DCDKwjuOHivu/lIaUUpRoFUsyaBZHQKhkYnOSntR1fZQoaAZoCWgPQwgxCoLHt7f8v5SGlFKUaBVLMmgWR0CoZCXirDIjdX2UKGgGaAloD0MIpmJjXkfc+7+UhpRSlGgVSzJoFkdAqGPpNoJzDHV9lChoBmgJaA9DCEs6ysFsQve/lIaUUpRoFUsyaBZHQKhjqWRigCh1fZQoaAZoCWgPQwiR7ucU5OcIwJSGlFKUaBVLMmgWR0CoZkTU7Sy/dX2UKGgGaAloD0MIzeodbofG9r+UhpRSlGgVSzJoFkdAqGYIVEd/8XV9lChoBmgJaA9DCD+PUZ55+fu/lIaUUpRoFUsyaBZHQKhly46wMYx1fZQoaAZoCWgPQwgOhGQBE7gNwJSGlFKUaBVLMmgWR0CoZYvq1PWQdX2UKGgGaAloD0MIKJtyhXe5B8CUhpRSlGgVSzJoFkdAqGgj8pCrtHV9lChoBmgJaA9DCBWoxeBhmvO/lIaUUpRoFUsyaBZHQKhn5oFFDv51fZQoaAZoCWgPQwj9+EuL+qT7v5SGlFKUaBVLMmgWR0CoZ6jiwSrYdX2UKGgGaAloD0MI+ir52F2g/r+UhpRSlGgVSzJoFkdAqGdoUSIxg3V9lChoBmgJaA9DCHFUbqKWpv2/lIaUUpRoFUsyaBZHQKhpRBQemvZ1fZQoaAZoCWgPQwiGONbFbXT2v5SGlFKUaBVLMmgWR0CoaQajvd/KdX2UKGgGaAloD0MI12g50EPt67+UhpRSlGgVSzJoFkdAqGjJGKAJ9nV9lChoBmgJaA9DCPvo1JXP8u2/lIaUUpRoFUsyaBZHQKhoiI1LrX11fZQoaAZoCWgPQwg/x0eLM0byv5SGlFKUaBVLMmgWR0Coamm0E5hjdX2UKGgGaAloD0MIKh+CqtFr/L+UhpRSlGgVSzJoFkdAqGosSVW0Z3V9lChoBmgJaA9DCGk2j8NgPvi/lIaUUpRoFUsyaBZHQKhp7ubZvk11fZQoaAZoCWgPQwgqVaLsLSX1v5SGlFKUaBVLMmgWR0Coaa6IFeOXdX2UKGgGaAloD0MI1QRR9wHI9b+UhpRSlGgVSzJoFkdAqGuE/8l5W3V9lChoBmgJaA9DCAgcCTTY1P6/lIaUUpRoFUsyaBZHQKhrR3j+7191fZQoaAZoCWgPQwjgSnZsBOIBwJSGlFKUaBVLMmgWR0CoawnTI/7jdX2UKGgGaAloD0MI+MWlKm1RB8CUhpRSlGgVSzJoFkdAqGrJRVIZqHV9lChoBmgJaA9DCEGbHD7pBAvAlIaUUpRoFUsyaBZHQKhspm1YyO91fZQoaAZoCWgPQwi/fogNFs7+v5SGlFKUaBVLMmgWR0CobGkLx7RfdX2UKGgGaAloD0MIjSrDuBsEA8CUhpRSlGgVSzJoFkdAqGwraIvalHV9lChoBmgJaA9DCExTBDi9S/S/lIaUUpRoFUsyaBZHQKhr6swtapx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}} |