This model has been quantized using GPTQModel.
- bits: 4
- dynamic: null
- group_size: 128
- desc_act: true
- static_groups: false
- sym: true
- lm_head: false
- true_sequential: true
- quant_method: "gptq"
- checkpoint_format: "gptq"
- meta:
- quantizer: gptqmodel:1.7.0
- uri: https://github.com/modelcloud/gptqmodel
- damp_percent: 0.1
- damp_auto_increment: 0.0025
Example:
from transformers import AutoTokenizer
from gptqmodel import GPTQModel
tokenizer = AutoTokenizer.from_pretrained("ModelCloud/Qwen2.5-0.5B-Instruct-gptqmodel-4bit")
model = GPTQModel.load("ModelCloud/Qwen2.5-0.5B-Instruct-gptqmodel-4bit")
messages = [
{"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
{"role": "user", "content": "How can I design a data structure in C++ to store the top 5 largest integer numbers?"},
]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=512)
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(result)
- Downloads last month
- 54
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model's library.
Model tree for ModelCloud/Qwen2.5-0.5B-Instruct-gptqmodel-4bit
Base model
Qwen/Qwen2.5-0.5B