This model has been quantized using GPTQModel.

  • bits: 4
  • dynamic: null
  • group_size: 128
  • desc_act: true
  • static_groups: false
  • sym: true
  • lm_head: false
  • true_sequential: true
  • quant_method: "gptq"
  • checkpoint_format: "gptq"
  • meta

Example:

from transformers import AutoTokenizer
from gptqmodel import GPTQModel

tokenizer = AutoTokenizer.from_pretrained("ModelCloud/Qwen2.5-0.5B-Instruct-gptqmodel-4bit")
model = GPTQModel.load("ModelCloud/Qwen2.5-0.5B-Instruct-gptqmodel-4bit")

messages = [
    {"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
    {"role": "user", "content": "How can I design a data structure in C++ to store the top 5 largest integer numbers?"},
]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")

outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=512)
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)

print(result)
Downloads last month
54
Safetensors
Model size
320M params
Tensor type
I32
·
BF16
·
FP16
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.

Model tree for ModelCloud/Qwen2.5-0.5B-Instruct-gptqmodel-4bit

Base model

Qwen/Qwen2.5-0.5B
Quantized
(40)
this model