segformer-b0-finetuned-segments-sidewalk-oct-22
This model is a fine-tuned version of nvidia/mit-b0 on the segments/sidewalk-semantic dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.8820
- eval_mean_iou: 0.1648
- eval_mean_accuracy: 0.2025
- eval_overall_accuracy: 0.7805
- eval_accuracy_unlabeled: nan
- eval_accuracy_flat-road: 0.8435
- eval_accuracy_flat-sidewalk: 0.9378
- eval_accuracy_flat-crosswalk: 0.0
- eval_accuracy_flat-cyclinglane: 0.5809
- eval_accuracy_flat-parkingdriveway: 0.0715
- eval_accuracy_flat-railtrack: 0.0
- eval_accuracy_flat-curb: 0.0041
- eval_accuracy_human-person: 0.0
- eval_accuracy_human-rider: 0.0
- eval_accuracy_vehicle-car: 0.8730
- eval_accuracy_vehicle-truck: 0.0
- eval_accuracy_vehicle-bus: 0.0
- eval_accuracy_vehicle-tramtrain: 0.0
- eval_accuracy_vehicle-motorcycle: 0.0
- eval_accuracy_vehicle-bicycle: 0.0
- eval_accuracy_vehicle-caravan: 0.0
- eval_accuracy_vehicle-cartrailer: 0.0
- eval_accuracy_construction-building: 0.8780
- eval_accuracy_construction-door: 0.0
- eval_accuracy_construction-wall: 0.0000
- eval_accuracy_construction-fenceguardrail: 0.0
- eval_accuracy_construction-bridge: 0.0
- eval_accuracy_construction-tunnel: 0.0
- eval_accuracy_construction-stairs: 0.0
- eval_accuracy_object-pole: 0.0
- eval_accuracy_object-trafficsign: 0.0
- eval_accuracy_object-trafficlight: 0.0
- eval_accuracy_nature-vegetation: 0.9399
- eval_accuracy_nature-terrain: 0.8232
- eval_accuracy_sky: 0.9347
- eval_accuracy_void-ground: 0.0
- eval_accuracy_void-dynamic: 0.0
- eval_accuracy_void-static: 0.0
- eval_accuracy_void-unclear: 0.0
- eval_iou_unlabeled: nan
- eval_iou_flat-road: 0.5426
- eval_iou_flat-sidewalk: 0.8046
- eval_iou_flat-crosswalk: 0.0
- eval_iou_flat-cyclinglane: 0.5502
- eval_iou_flat-parkingdriveway: 0.0678
- eval_iou_flat-railtrack: 0.0
- eval_iou_flat-curb: 0.0041
- eval_iou_human-person: 0.0
- eval_iou_human-rider: 0.0
- eval_iou_vehicle-car: 0.6930
- eval_iou_vehicle-truck: 0.0
- eval_iou_vehicle-bus: 0.0
- eval_iou_vehicle-tramtrain: 0.0
- eval_iou_vehicle-motorcycle: 0.0
- eval_iou_vehicle-bicycle: 0.0
- eval_iou_vehicle-caravan: 0.0
- eval_iou_vehicle-cartrailer: 0.0
- eval_iou_construction-building: 0.6055
- eval_iou_construction-door: 0.0
- eval_iou_construction-wall: 0.0000
- eval_iou_construction-fenceguardrail: 0.0
- eval_iou_construction-bridge: 0.0
- eval_iou_construction-tunnel: 0.0
- eval_iou_construction-stairs: 0.0
- eval_iou_object-pole: 0.0
- eval_iou_object-trafficsign: 0.0
- eval_iou_object-trafficlight: 0.0
- eval_iou_nature-vegetation: 0.7900
- eval_iou_nature-terrain: 0.7063
- eval_iou_sky: 0.8381
- eval_iou_void-ground: 0.0
- eval_iou_void-dynamic: 0.0
- eval_iou_void-static: 0.0
- eval_iou_void-unclear: 0.0
- eval_runtime: 21.9758
- eval_samples_per_second: 9.101
- eval_steps_per_second: 0.592
- epoch: 0.4
- step: 20
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1