File size: 3,075 Bytes
3203a45 7d2de27 fe600b1 3203a45 cc06258 7280310 4d20550 6acc0a9 5cbe9cb 6acc0a9 fe93cd2 6acc0a9 fe93cd2 6acc0a9 4d20550 6acc0a9 a030db7 6acc0a9 fe93cd2 6acc0a9 fe93cd2 afc2781 fc0e841 ae85e6a fc0e841 fe600b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: mit
widget:
- text: >-
We used our liquidity tools to make funding available to banks that might
need it.
datasets:
- Moritz-Pfeifer/CentralBankCommunication
language:
- en
pipeline_tag: text-classification
tags:
- finance
---
<div style="display: flex; align-items: center;">
<img src="https://i.postimg.cc/HLqPqkyk/Central-Bank-Ro-BERTa-logos-black.png" width="200" height="200" style="margin-right: 20px;">
<div>
<h1 style="font-size: 36px; font-weight: bold; margin: 0;">CentralBankRoBERTa</h1>
<p style="font-size: 18px; margin: 0;">A Fine-Tuned Large Language Model for Central Bank Communications</p>
</div>
</div>
## CentralBankRoBERTa
CentralBankRoBERTA is a large language model. It combines an economic agent classifier that distinguishes five basic macroeconomic agents with a binary [sentiment classifier](https://huggingface.co/Moritz-Pfeifer/CentralBankRoBERTa-sentiment-classifier) that identifies the emotional content of sentences in central bank communications.
#### Overview
The AgentClassifier model is designed to classify the target agent of a given text. It can determine whether the text is adressing **households**, **firms**, **the financial sector**, **the government** or **the central bank** itself. This model is based on the RoBERTa architecture and has been fine-tuned on a diverse and extensive dataset to provide accurate predictions.
#### Intended Use
The AgentClassifier model is intended to be used for the analysis of central bank communications where content categorization based on target agents is essential.
#### Performance
- Accuracy: 93%
- F1 Score: 0.93
- Precision: 0.93
- Recall: 0.93
### Usage
You can use these models in your own applications by leveraging the Hugging Face Transformers library. Below is a Python code snippet demonstrating how to load and use the AgentClassifier model:
```python
from transformers import pipeline
# Load the AgentClassifier model
agent_classifier = pipeline("text-classification", model="Moritz-Pfeifer/CentralBankRoBERTa-agent-classifier")
# Perform agent classification
agent_result = agent_classifier("We used our liquidity tools to make funding available to banks that might need it.")
print("Agent Classification:", agent_result[0]['label'])
```
<table>
<tr>
<td colspan="2" style="border-top: 1px solid #ccc; padding: 5px; text-align: left;">
Please cite this model as Pfeifer, M. and Marohl, V.P. (2023) "CentralBankRoBERTa: A Fine-Tuned Large Language Model for Central Bank Communications"
</td>
</tr>
<tr>
<td style="padding: 5px;">
Moritz Pfeifer<br>
Institute for Economic Policy, University of Leipzig<br>
04109 Leipzig, Germany<br>
<a href="mailto:pfeifer@wifa.uni-leipzig.de">pfeifer@wifa.uni-leipzig.de</a>
</td>
<td style="padding: 5px;">
Vincent P. Marohl<br>
Department of Mathematics, Columbia University<br>
New York NY 10027, USA<br>
<a href="mailto:vincent.marohl@columbia.edu">vincent.marohl@columbia.edu</a>
</td>
</tr>
</table> |