File size: 3,607 Bytes
1151de2 d162f88 e12c0fb 74d9e0d 197f75b 74d9e0d 288d09c 28d1054 5d0e2b2 8fb4b85 2443a3c 8fb4b85 28d1054 8fb4b85 74d9e0d 8549217 782e79c 8549217 782e79c 74d9e0d f421b93 74d9e0d 3129cb0 74d9e0d 9373da9 a591ffb 74d9e0d a591ffb 74d9e0d 2efc89f f49493f 74d9e0d df49e8d 5d0e2b2 ada0fca df49e8d 5d0e2b2 df49e8d 5d0e2b2 df49e8d ada0fca 74d9e0d 5d0e2b2 b44058d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
license: mit
language:
- it
- en
library_name: transformers
tags:
- sft
- it
- mistral
- chatml
---
# Model Information
Azzurro is an updated version of [Mistral-7B-v0.2](https://huggingface.co/alpindale/Mistral-7B-v0.2-hf), specifically fine-tuned with SFT and LoRA adjustments.
- It's trained on publicly available datasets, like [SQUAD-it](https://huggingface.co/datasets/squad_it), and datasets we've created in-house.
- it's designed to understand and maintain context, making it ideal for Retrieval Augmented Generation (RAG) tasks and applications requiring contextual awareness.
# Evaluation
We evaluated the model using the same test sets as used for the [Open Ita LLM Leaderboard](https://huggingface.co/spaces/FinancialSupport/open_ita_llm_leaderboard)
| hellaswag_it acc_norm | arc_it acc_norm | m_mmlu_it 5-shot acc | Average |
|:----------------------| :--------------- | :-------------------- | :------- |
| 0.6067 | 0.4405 | 0.5112 | 0,52 |
## Usage
Be sure to install these dependencies before running the program
```python
!pip install transformers torch sentencepiece
```
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cpu" # if you want to use the gpu make sure to have cuda toolkit installed and change this to "cuda"
model = AutoModelForCausalLM.from_pretrained("MoxoffSpA/Azzurro")
tokenizer = AutoTokenizer.from_pretrained("MoxoffSpA/Azzurro")
question = """Quanto è alta la torre di Pisa?"""
context = """
La Torre di Pisa è un campanile del XII secolo, famoso per la sua inclinazione. Alta circa 56 metri.
"""
prompt = f"Domanda: {question}, contesto: {context}"
messages = [
{"role": "user", "content": prompt}
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(
model_inputs, # The input to the model
max_new_tokens=128, # Limiting the maximum number of new tokens generated
do_sample=True, # Enabling sampling to introduce randomness in the generation
temperature=0.1, # Setting temperature to control the randomness, lower values make it more deterministic
top_p=0.95, # Using nucleus sampling with top-p filtering for more coherent generation
eos_token_id=tokenizer.eos_token_id # Specifying the token that indicates the end of a sequence
)
decoded_output = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
trimmed_output = decoded_output.strip()
print(trimmed_output)
```
## Bias, Risks and Limitations
Azzurro has not been aligned to human preferences for safety within the RLHF phase or deployed with in-the-loop filtering of
responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). It is also unknown what the size and composition
of the corpus was used to train the base model (mistralai/Mistral-7B-v0.2), however it is likely to have included a mix of Web data and technical sources
like books and code.
## Links to resources
- SQUAD-it dataset: https://huggingface.co/datasets/squad_it
- Mistral_7B_v0.2 original weights: https://models.mistralcdn.com/mistral-7b-v0-2/mistral-7B-v0.2.tar
- Mistral_7B_v0.2 model: https://huggingface.co/alpindale/Mistral-7B-v0.2-hf
- Open Ita LLM Leaderbord: https://huggingface.co/spaces/FinancialSupport/open_ita_llm_leaderboard
## Quantized versions
We have published as well the 4 bit and 8 bit versions of this model:
https://huggingface.co/MoxoffSpA/AzzurroQuantized
## The Moxoff Team
Jacopo Abate, Marco D'Ambra, Luigi Simeone, Gianpaolo Francesco Trotta |