|
--- |
|
license: apache-2.0 |
|
language: |
|
- it |
|
- en |
|
library_name: transformers |
|
tags: |
|
- sft |
|
- it |
|
- mistral |
|
- chatml |
|
--- |
|
|
|
# Model Information |
|
|
|
xxxx is a SFT and LoRA finetuned version of Mistral-7B-v0.2 |
|
|
|
It has been trained on a mixture of opensource datasets, like SQUAD-it (https://huggingface.co/datasets/squad_it), and some internally made datasets. |
|
|
|
It is not just a Q&A, it is a Q&A + Context model, with the goal being it being used for RAGs and application in need of a context. |
|
|
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
device = "cuda" |
|
|
|
model = AutoModelForCausalLM.from_pretrained("MoxoffSpA/xxxx") |
|
tokenizer = AutoTokenizer.from_pretrained("MoxoffSpA/xxxx") |
|
|
|
question = """Quanto è alta la torre di Pisa?""" |
|
context = """ |
|
La Torre di Pisa è un campanile del XII secolo, famoso per la sua inclinazione. Alta circa 56 metri. |
|
""" |
|
prompt = f"Rispondi alla seguente domanda con meno parle possibili basandoti sul contesto fornito. Domanda: {question}, contesto: {context}" |
|
|
|
messages = [ |
|
{"role": "user", "content": prompt}, |
|
] |
|
|
|
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") |
|
|
|
model_inputs = encodeds.to(device) |
|
model.to(device) |
|
|
|
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) |
|
decoded = tokenizer.batch_decode(generated_ids) |
|
print(decoded[0]) |
|
``` |
|
|
|
|
|
## The Moxoff Team |
|
Marco D'Ambra, Jacopo Abate, Gianpaolo Francesco Trotta |