Mtc2's picture
First reinforcement learning model on Hugging face
49c68fc
raw
history blame
14 kB
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fcfe589f010>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcfe589f0a0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcfe589f130>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcfe589f1c0>",
"_build": "<function ActorCriticPolicy._build at 0x7fcfe589f250>",
"forward": "<function ActorCriticPolicy.forward at 0x7fcfe589f2e0>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcfe589f370>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcfe589f400>",
"_predict": "<function ActorCriticPolicy._predict at 0x7fcfe589f490>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcfe589f520>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcfe589f5b0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcfe589f640>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7fcfe5893fc0>"
},
"verbose": 1,
"policy_kwargs": {},
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1686510053094378110,
"learning_rate": 0.0003,
"tensorboard_log": null,
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK0vKj5It5y6hZFutpp1s7DIPnI6a16PNQAAgD8AAIA/wEorvkj9mLwH0gM7ppRUORRzCj5zNza6AACAPwAAgD9NZRS90qWou/32/jxHnnU9qywMOhO8XDwAAIA/AACAP02pWT3wCrs/SKA8P2t3dj7wur28xlwZPQAAAAAAAAAAWmBDPk5kqbyfuSe74TaJOceQFb7yu1k6AACAPwAAgD+mNJA+mX1FPsqye756ZYm+7qz+O+L3oL0AAAAAAAAAAA2Ylj3hyuE571kfvGSF27HeB9O7y+X8MwAAgD8AAIA/QCE9PhQKhbxvWqI7UZf/uazk5b3Fd826AACAPwAAgD9zOiq+XHRYvJ3DGbszFz65cW7GPbiRRjoAAIA/AACAP82yXj2oMqE/ya4CP8AnS7/zeQE9v9Q7PgAAAAAAAAAAc1yDvYWzlLlCk9Y8hWMns2Y7obnaXFOzAACAPwAAgD+zdUq9SL+supMKmT0HNga5j3GwOzjh8rcAAIA/AACAP6YJIr7BIIS8U7Liu4fJhbpya+U9dX9dOwAAgD8AAIA/c/LYPdxLRD6Wfko9YS1NvrRXCT3oMJO7AAAAAAAAAAC62im+j4V1vKNGMztLB3w5Pj/jPc3ecLoAAIA/AACAP/M7wL1sRrG78toIPcbwCTx4oAG9K0P1PAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"_stats_window_size": 100,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWV8wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGxR+az/qCMAWyUS9SMAXSUR0CfFmVwPy08dX2UKGgGR0ByATevZAY6aAdLt2gIR0CfGl8Rcu8LdX2UKGgGR0BxL0bjtG/faAdL2GgIR0CfGphNM496dX2UKGgGR0BxSmPV/c33aAdL32gIR0CfHI349HMEdX2UKGgGR0BytYmMOwxGaAdL+mgIR0CfHKEit7rtdX2UKGgGR0BxZn5Ec81XaAdL2mgIR0CfHYgGKQ7tdX2UKGgGR0BxtUyXUpd9aAdL5mgIR0CfHbjWCmMwdX2UKGgGR0BxAFgqmTC+aAdL2WgIR0CfHhKraM72dX2UKGgGR0Bw/Z4xDb8FaAdNDAFoCEdAnx8QRf4REnV9lChoBkdAcNVOXE61cGgHTQIBaAhHQJ8ffjABT4t1fZQoaAZHQGUSR/3Fkx1oB03oA2gIR0CfIG+4LCvYdX2UKGgGR0Bg48AJb+tKaAdN6ANoCEdAnyLGwV0tAnV9lChoBkdAcE+KGL1mJ2gHS85oCEdAnyPZfdAPd3V9lChoBkdAcfu1hLGrCGgHS+ZoCEdAnyS0O3DvVnV9lChoBkdAY0iMYMvysmgHTegDaAhHQJ8k3hR64Uh1fZQoaAZHQHFt8GHHmzVoB0vgaAhHQJ8l9T72tdR1fZQoaAZHQHF7y3XqZ+hoB0v2aAhHQJ8mZRFZxJd1fZQoaAZHQHAA8/hVENRoB0vGaAhHQJ8mfAWSEDh1fZQoaAZHQG8LEs8PnSxoB0u0aAhHQJ8m0GX5WR11fZQoaAZHQHGrg/cFhXtoB0vpaAhHQJ8nSQhfShJ1fZQoaAZHQGIhhMBZIQRoB03oA2gIR0CfKOP6KtPpdX2UKGgGR0ByuogdOqNqaAdLxGgIR0CfKdV45cTrdX2UKGgGR0BuCaDGtITXaAdLuGgIR0CfKoPiT+vRdX2UKGgGR0BlAkulGgBcaAdN6ANoCEdAnyrttIkJKXV9lChoBkdAchtwcHWz4WgHS89oCEdAnywyk43m3nV9lChoBkdAcdBPJaJQ+GgHS9loCEdAnyytvKlpGnV9lChoBkdAcD7vWH1vl2gHS79oCEdAny2dQj2SMnV9lChoBkdAcA9y1uzhP2gHS8poCEdAny5uaz/p+3V9lChoBkdAcg4re67NCGgHS+ZoCEdAny6JI+W4VnV9lChoBkdAY+WdaMaS92gHTegDaAhHQJ8u+0qpcX51fZQoaAZHQHEgqlHjIaNoB0v+aAhHQJ8vAmois4l1fZQoaAZHQGScR15jYqZoB03oA2gIR0CfLydBBzFNdX2UKGgGR0Bwor8fms/6aAdL/mgIR0CfL5nGsFMadX2UKGgGR0BxScfms/6gaAdLy2gIR0CfMU889wFUdX2UKGgGR0Bx2ES+QEIPaAdLyGgIR0CfMgh/Aj6fdX2UKGgGR0Bx5UrtmcvvaAdLwmgIR0CfMj9MsYl6dX2UKGgGR0Bw+OFmFrVOaAdLxGgIR0CfM7Jb+tKadX2UKGgGR0Bw0zTLGJemaAdLxWgIR0CfNGPMjeKsdX2UKGgGR0BuXkCvHLidaAdLvWgIR0CfNmwh4dIYdX2UKGgGR0BuL9JnQID6aAdLtWgIR0CfNs17pmmMdX2UKGgGR0Bul6NCJGe+aAdLwmgIR0CfNtuGbkOqdX2UKGgGR0ByWN1yNn5BaAdLx2gIR0CfN9Grjo6kdX2UKGgGR0BwAl8twrDqaAdLymgIR0CfN9IczZYgdX2UKGgGR0BQa9Nvfj0daAdLf2gIR0CfN/qSX+l1dX2UKGgGR0ByYWhFmWdFaAdLzmgIR0CfOKe3hGYsdX2UKGgGR0BwTJPrOZ9eaAdNCAFoCEdAnzjfXsgMdHV9lChoBkdAb3Bw0fozN2gHS7VoCEdAnzw2ETQE6nV9lChoBkdAcc8rKeTV2GgHTQEBaAhHQJ89MoDxLCh1fZQoaAZHQEjdssxwhntoB0uFaAhHQJ8+O7J4jbB1fZQoaAZHQHHnCTlkpZxoB0uZaAhHQJ8+QVQAMlV1fZQoaAZHQHHNNdE9dNZoB0vSaAhHQJ8+f6SDAah1fZQoaAZHQHFHpvo/zJ9oB00VAWgIR0CfPvqQiiZfdX2UKGgGR0Bv9jTnaFmGaAdL1GgIR0CfQQRFqi48dX2UKGgGR0BwanPa+N96aAdLtGgIR0CfQUaMaS9vdX2UKGgGR0BytPS0BwMqaAdL5WgIR0CfQVifg75mdX2UKGgGR0BOn5bY9Pk8aAdLuWgIR0CfQY2pQ1rJdX2UKGgGR0Bwy51Oj7AMaAdL0WgIR0CfQbLm6oVEdX2UKGgGR0Bg5IHC4z7/aAdN6ANoCEdAn0IAM6RyO3V9lChoBkdAZFWoqkM1CWgHTegDaAhHQJ9CJh+fAbh1fZQoaAZHQHF4NF4LThJoB00iAWgIR0CfQ61bqyGBdX2UKGgGR0BhaOjASFoMaAdN6ANoCEdAn0QYqLCN0nV9lChoBkdAcLe+Vkc0cmgHS8VoCEdAn0To8EFGG3V9lChoBkdAb47S8an752gHS9JoCEdAn0Uuh0yP/HV9lChoBkdAcNgWkrPMS2gHS/JoCEdAn0V8hcJMQHV9lChoBkdAcFtwPiDM/2gHS99oCEdAn0X0Nrj5sXV9lChoBkdAcwew84gieWgHS7poCEdAn0Zg2hqTKXV9lChoBkdAcPDT+ee4C2gHS8JoCEdAn0aJzo2XLXV9lChoBkdAcPCAQQL/j2gHS8doCEdAn0bpudf9gnV9lChoBkdAcMlmw7kn1GgHS99oCEdAn0fN6Tnq3XV9lChoBkdAcd5SDRMN+mgHS/9oCEdAn0gk0WM0g3V9lChoBkdAbt50V8CxNmgHS+FoCEdAn0g8lPacqnV9lChoBkdAcN/i/fwZwWgHS9xoCEdAn0hEeEIw/XV9lChoBkdAb3USM98qnWgHS8doCEdAn0oChFmWdHV9lChoBkdAcfESl3yI6GgHS9poCEdAn0oiZrpJPXV9lChoBkdAcq8ny/bj+GgHS7doCEdAn0xCyMUAUHV9lChoBkdAcMVPbfxc3WgHS85oCEdAn0xT37DVIHV9lChoBkdAcRxMYMvysmgHS51oCEdAn01lb3XZoXV9lChoBkdAcRecLSeAeGgHS+xoCEdAn03wK0D2anV9lChoBkdAZJrttygf2mgHTegDaAhHQJ9OCAiFCcB1fZQoaAZHQHHk6Jl8PWhoB00gAWgIR0CfTixMnJDFdX2UKGgGR0BxPs3tKIznaAdL82gIR0CfTrDB/I8ydX2UKGgGR0ByvRqsU7CBaAdL7GgIR0CfT0ekHlfadX2UKGgGR0BwLbXQMQVcaAdLtmgIR0CfT6wHJLdvdX2UKGgGR0BMO4xtYSxraAdLwWgIR0CfUBRB/qgRdX2UKGgGR0ByTJpWV/tqaAdNBwFoCEdAn1BHscABDHV9lChoBkdAcUqcbBGhEmgHS6RoCEdAn1EwrDqGDnV9lChoBkdAcQdEwFkhBGgHS8BoCEdAn1H8CxNZeXV9lChoBkdAcAzLeANG3GgHS9JoCEdAn1N+biIcinV9lChoBkdAcLZBtDUmUmgHS8toCEdAn1QSS/0ulHV9lChoBkdAb37GwRoRI2gHS+poCEdAn1T5pnHvMXV9lChoBkdAcUjd4mkWRGgHS8VoCEdAn1VNszl90HV9lChoBkdAblqnLq2SdWgHS/1oCEdAn1WJz1bqyHV9lChoBkdAcgZCNjslcGgHS+xoCEdAn1XgLqlgt3V9lChoBkdAbyuCZnctXmgHS8JoCEdAn1YvBFd9lXV9lChoBkdASq6jafzz3GgHS7poCEdAn1Ys7QswtnV9lChoBkdAcdxd07r9l2gHS5xoCEdAn1cTPKMefnV9lChoBkdAckid9Ujs2WgHS/JoCEdAn1c9dqtYCHV9lChoBkdAU/HywwCbMGgHS4loCEdAn1ibCm/Fi3V9lChoBkdAcIFyIYWLxmgHS7JoCEdAn1we2qkuYnV9lChoBkdAcmjz3AVO9GgHS/toCEdAn1xB/y5I6XVlLg=="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 315,
"observation_space": {
":type:": "<class 'gymnasium.spaces.box.Box'>",
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
"dtype": "float32",
"bounded_below": "[ True True True True True True True True]",
"bounded_above": "[ True True True True True True True True]",
"_shape": [
8
],
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
"n": "4",
"start": "0",
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"n_steps": 2048,
"gamma": 0.99,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 10,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
}
}