File size: 13,715 Bytes
3c69400
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7968c6a851b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7968c6a85240>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7968c6a852d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7968c6a85360>", "_build": "<function ActorCriticPolicy._build at 0x7968c6a853f0>", "forward": "<function ActorCriticPolicy.forward at 0x7968c6a85480>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7968c6a85510>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7968c6a855a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7968c6a85630>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7968c6a856c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7968c6a85750>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7968c6a857e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7968c6a88640>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696876366881599866, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMrijvlrK4/vywwPWmR0b7CfcM8KswwPgAAAAAAAAAAzfG6vdw3sj+idfS+11aLvorUvr0GME2+AAAAAAAAAABmchA8gcCwPqSIw73c+bG+32AHvhAFNb0AAAAAAAAAAJohez0f174/soykPk2ajrvzknQ9KhVaPgAAAAAAAAAAgBZ1PR+99LlXKy86QUU+ti5CjrrTS0q5AACAPwAAgD8A7CW8nw+Su5o1Bzqmpok8mXEiPWiear0AAIA/AACAP5oExjypukK8krEVu1+v0TxdaVY899GgvQAAgD8AAIA/mnmQu0jPnLrShIS2t8MwsQ6LuzpC2Js1AACAPwAAgD+aNcU9q1wdP4qwFL7J6LG+PhHJPHhkRDwAAAAAAAAAAAAGt7ycqki8SOscvIzz1jybebM9JPGsvQAAgD8AAIA/M3MbuokZPz0Otzg9n38JvnRjtLvAt6A9AAAAAAAAAABNZgo99hxEugUoxzmWDlI1uyKPOkti5rgAAIA/AACAP2bqirv4BK4/LHUhu5LM3L7aTpg9jrcbvAAAAAAAAAAAxisUPocaSD8+rRu9y9HYvk2OcT7QpuO9AAAAAAAAAAAmT/I9SRntPuNJXL6MGra+xZoEvVXgubwAAAAAAAAAAM3wgTtUQZM9ZImIPS91VL4tGNc9Yg3AvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCT42Kl54aMAWyUTSsBjAF0lEdAkUiG38XN1XV9lChoBkdAbvyFvAGjbmgHTQ4BaAhHQJFI3dl/Yrd1fZQoaAZHQHGNiHEdeY5oB0v5aAhHQJFJAYQ8OkN1fZQoaAZHQHCj/E0iyIJoB0v6aAhHQJFJs29+PR11fZQoaAZHQHJ6IoJAt4BoB00cAWgIR0CRSb4A0bcXdX2UKGgGR0ByS5MAWBSUaAdL9mgIR0CRSjTvy9VWdX2UKGgGR0BxJLl5nlGPaAdL52gIR0CRSpUVzp5edX2UKGgGR0ByW4O7QLNOaAdNCAFoCEdAkUudJaq0dHV9lChoBkdAcbNvc8DB/WgHS/5oCEdAkUvQaFVT73V9lChoBkdAckDUJfICEGgHTSIBaAhHQJFMxblijL11fZQoaAZHQG599w3o9s9oB00GAWgIR0CRTPhGH58CdX2UKGgGR0ByJ/doFmnPaAdL+GgIR0CRTTKMefZmdX2UKGgGR0BubKlUIcBEaAdNTwFoCEdAkU08Vk+X7nV9lChoBkdAc0Qx8UmD2GgHTQIBaAhHQJFNVL127nR1fZQoaAZHQHBAlsDW9UVoB00QAWgIR0CRUFZs9B8hdX2UKGgGR0ByDrvMKTjeaAdL7mgIR0CRUQn8baRIdX2UKGgGR0Bx2FT4tYjjaAdNAQFoCEdAkVJcjmjj73V9lChoBkdAb9u3QUpNK2gHTUcBaAhHQJFSvgflp491fZQoaAZHQHFE9Htnf2toB0vsaAhHQJFSviFTNt91fZQoaAZHQHCYSs0YTCdoB0v9aAhHQJFTfI7vG6x1fZQoaAZHQG/apeE7GNtoB00NAWgIR0CRVQOBDohZdX2UKGgGR0BwXQOoYNy6aAdNBQFoCEdAkVU1oYekpXV9lChoBkdAcrt9GI9C/2gHTVQBaAhHQJFWm6pYLb51fZQoaAZHQHBm4XO4XoFoB00JAWgIR0CRVuevZAY6dX2UKGgGR0Bx3Os7uDzzaAdNCgFoCEdAkVc2qYJE6XV9lChoBkdAclgKJEYwZmgHS/FoCEdAkVdY6nzg/HV9lChoBkdAbfVq33Hq/2gHS/xoCEdAkVeYGt6ol3V9lChoBkdAcCqZrYXfqGgHTQIBaAhHQJFYSUmlZYB1fZQoaAZHQFQE78vVVghoB0uxaAhHQJFYgn1Fpfx1fZQoaAZHQHG9hEKE385oB00RAWgIR0CRWODOTq0MdX2UKGgGR0Bt5nVkMCtBaAdNYwFoCEdAkVxMMRYigXV9lChoBkdAbNGu+RHPNWgHTQMBaAhHQJFcbvWpZOl1fZQoaAZHQHBi2qHXVb1oB00PAWgIR0CRXkgXuVopdX2UKGgGR0BwuwkleF+NaAdNDQFoCEdAkV6I//vOQnV9lChoBkdAcqmu1F6RhmgHTRwBaAhHQJFfKkXUH6d1fZQoaAZHQHEnvReC04RoB00hAWgIR0CRYCZBcAzYdX2UKGgGR0BQ6P779AHFaAdLv2gIR0CRYDJHAh0RdX2UKGgGR0BuJjjghr31aAdL/2gIR0CRYD3j+717dX2UKGgGR0ByLj7oB7u2aAdNEQFoCEdAkWDQrUb1iHV9lChoBkdAcB8mR/3Fk2gHS/9oCEdAkWHKAOJ+D3V9lChoBkdAb14m51/2CmgHTQ4BaAhHQJFymij+Jgt1fZQoaAZHQHJalCw8nu1oB00JAWgIR0CRctTc6/7BdX2UKGgGR0BvYqUJOWSmaAdNIAFoCEdAkXMj72tdRnV9lChoBkdAcbbX668QI2gHTRYBaAhHQJFzSFsYVIt1fZQoaAZHQHBt1sYVIqdoB00aAWgIR0CRc+it7rs0dX2UKGgGR0Byrny1/lQuaAdNLQFoCEdAkXSaCtihFnV9lChoBkdAcFrP+n62v2gHTQsBaAhHQJF19TyauwJ1fZQoaAZHQHFdl9Wp6yBoB00LAWgIR0CRdgqASWZ7dX2UKGgGR0BvCPJkoWpIaAdNDAFoCEdAkXc2wV0tAnV9lChoBkdAbhTJW/8EV2gHTQwBaAhHQJF3YVFhG6R1fZQoaAZHQHHF2cnVoYhoB0v8aAhHQJF4IURFqi51fZQoaAZHQHK9IQ8OkLxoB0v+aAhHQJF4OIyj59F1fZQoaAZHQGwvI6S1Vo9oB00DAWgIR0CReE3WFvhqdX2UKGgGR0BwsQ4m1IAfaAdNPAFoCEdAkXldjTa0yHV9lChoBkdAczVK+i8Fp2gHS/xoCEdAkXlwt4A0bnV9lChoBkdAcaXNpdrwfGgHTQYBaAhHQJF5nXSSeRR1fZQoaAZHQHFoIfKZDzBoB0v1aAhHQJF6DkwN9Yx1fZQoaAZHQHBue67NB4VoB00tAWgIR0CRehKCg9NfdX2UKGgGR0BwYmAe7tiQaAdNBQFoCEdAkXpRMrVe8nV9lChoBkdAcgZG2kSElGgHS/xoCEdAkXrf+bVjJHV9lChoBkdAcXMgow22omgHTS4BaAhHQJF6+0MPSUl1fZQoaAZHQG4X/lp48lpoB00AAWgIR0CRe6urZJ05dX2UKGgGR0BxcxPM0P6LaAdL7WgIR0CRfxCTUy57dX2UKGgGR0BzAk482aUiaAdL9WgIR0CRfyM8HObBdX2UKGgGR0BwXN2X9itraAdNDQFoCEdAkX8q37UG3XV9lChoBkdAcJyv4dp7C2gHTVABaAhHQJF/o9IPK+11fZQoaAZHQHK2BhMJyABoB00kAWgIR0CRf7XzDn/2dX2UKGgGR0BxBUwco6S1aAdNZwFoCEdAkYB1vVEux3V9lChoBkdAbJl6ol2NemgHTQYBaAhHQJGA+raM72d1fZQoaAZHQHEh++AVfu1oB00xAWgIR0CRgRq+8Gs4dX2UKGgGR0BxVtlTWGypaAdNBwFoCEdAkYEv5YYBNnV9lChoBkdAcqW4wRGtp2gHS/poCEdAkYFBQrMC93V9lChoBkdAcZbxBE8aGmgHS+loCEdAkYHK+rU9ZHV9lChoBkdAcE10vGp++mgHTTEBaAhHQJGCEYixFAp1fZQoaAZHQHDEZ1/2Cd1oB00ZAWgIR0CRghDMvAXVdX2UKGgGR0BxDj6BRQ7+aAdNEgFoCEdAkYIftx+8XnV9lChoBkdAcE/jhDPWx2gHS/xoCEdAkYLYGD+R5nV9lChoBkdAcUCvalDWsmgHTSQBaAhHQJGC+LHdXT51fZQoaAZHQHKNkd/8VHpoB00AAWgIR0CRhd8PWhAXdX2UKGgGR0Bv9MlkYoAoaAdNBQFoCEdAkYYVk+X7cnV9lChoBkdATZWU8mrsB2gHS81oCEdAkYYqG+K0lnV9lChoBkdAcXkQO4G2TmgHTRgBaAhHQJGHKWnjyWl1fZQoaAZHQHBVozFdcB5oB00gAWgIR0CRh3xOclPadX2UKGgGR0Bw7CfPHDJmaAdL9mgIR0CRh5QumJm/dX2UKGgGR0ByfKH446wMaAdL3GgIR0CRh+VIqbz9dX2UKGgGR0Bx22pLmITHaAdNFgFoCEdAkYfk6xPfsXV9lChoBkdAc0WZBsyi22gHTQQBaAhHQJGIKIJqqOt1fZQoaAZHQHC5upn6EaloB00AAWgIR0CRiO9mpVCHdX2UKGgGR0BvH5nL7oB8aAdNaQFoCEdAkYkGlhw2l3V9lChoBkdAcnaXY150KmgHTSwBaAhHQJGJNdt2s7x1fZQoaAZHQHLsEtRNyo5oB0vsaAhHQJGJYWWQfZF1fZQoaAZHQG+8glfJFLFoB00RAWgIR0CRiXPTodMkdX2UKGgGR0BukLB/I8yOaAdNIAFoCEdAkYtdqQA+6nV9lChoBkdAVE1y0a6z3WgHS7ZoCEdAkYuX05EMLHV9lChoBkdAb7/S88La3GgHTXUBaAhHQJGMfJA+pwV1fZQoaAZHQHHI0GiYb85oB0v1aAhHQJGOISM98qp1fZQoaAZHQHJCIxpL26FoB0v0aAhHQJGPiwRoRI11fZQoaAZHQHBdtvsJIDpoB00dAWgIR0CRj/KjBVMmdX2UKGgGR0ByBYQkHD77aAdL8WgIR0CRj/5n13+udX2UKGgGR0Bxy8ifQKKHaAdL6WgIR0CRkG/JvHcUdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}