SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("MugheesAwan11/bge-base-securiti-dataset-1-v19")
# Run inference
sentences = [
'Consent of an individual is valid if it is reasonable to expect that an individual to whom the organization’s activities are directed would understand the nature, purpose, and consequences of the collection, use, or disclosure of the personal information to which they are consenting. The information must be provided in manageable and easily accessible ways to data subjects and data subjects must be allowed to withdraw consent. If there is a use or disclosure a data subject would not reasonably expect to be occurring, such as certain sharing of information with a third party or the tracking of location, express consent would likely be required. However, the data subject’s consent may not be required for certain data processing activities such as when the collection is “clearly” in the interests of the individual and consent cannot be obtained in a timely way, data is being collected in the course of employment, journalistic, is already publicly available, information is being collected for the detection and prevention of fraud or for',
'How should information be provided to data subjects in manageable and easily accessible ways?',
'Which state, following California, Virginia, and Colorado, recently passed privacy legislation like the VCDPA?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4021 |
cosine_accuracy@3 | 0.5567 |
cosine_accuracy@5 | 0.6804 |
cosine_accuracy@10 | 0.7526 |
cosine_precision@1 | 0.4021 |
cosine_precision@3 | 0.1856 |
cosine_precision@5 | 0.1361 |
cosine_precision@10 | 0.0753 |
cosine_recall@1 | 0.4021 |
cosine_recall@3 | 0.5567 |
cosine_recall@5 | 0.6804 |
cosine_recall@10 | 0.7526 |
cosine_ndcg@10 | 0.565 |
cosine_mrr@10 | 0.506 |
cosine_map@100 | 0.5167 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3918 |
cosine_accuracy@3 | 0.5876 |
cosine_accuracy@5 | 0.6289 |
cosine_accuracy@10 | 0.7526 |
cosine_precision@1 | 0.3918 |
cosine_precision@3 | 0.1959 |
cosine_precision@5 | 0.1258 |
cosine_precision@10 | 0.0753 |
cosine_recall@1 | 0.3918 |
cosine_recall@3 | 0.5876 |
cosine_recall@5 | 0.6289 |
cosine_recall@10 | 0.7526 |
cosine_ndcg@10 | 0.5625 |
cosine_mrr@10 | 0.5031 |
cosine_map@100 | 0.5142 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3814 |
cosine_accuracy@3 | 0.5773 |
cosine_accuracy@5 | 0.6392 |
cosine_accuracy@10 | 0.7113 |
cosine_precision@1 | 0.3814 |
cosine_precision@3 | 0.1924 |
cosine_precision@5 | 0.1278 |
cosine_precision@10 | 0.0711 |
cosine_recall@1 | 0.3814 |
cosine_recall@3 | 0.5773 |
cosine_recall@5 | 0.6392 |
cosine_recall@10 | 0.7113 |
cosine_ndcg@10 | 0.5461 |
cosine_mrr@10 | 0.4931 |
cosine_map@100 | 0.5068 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 882 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 18 tokens
- mean: 227.32 tokens
- max: 414 tokens
- min: 10 tokens
- mean: 21.98 tokens
- max: 102 tokens
- Samples:
positive anchor Leader in Data Privacy View Events Spotlight Talks Education Contact Us Schedule a Demo Products By Use Cases By Roles Data Command Center View Learn more Asset and Data Discovery Discover dark and native data assets Learn more Data Access Intelligence & Governance Identify which users have access to sensitive data and prevent unauthorized access Learn more Data Privacy Automation PrivacyCenter.Cloud
Data Mapping data subject must be notified of any such extension within one month of receiving the request, along with the reasons for the delay and the possibility of complaining to the supervisory authority. The right to restrict processing applies when the data subject contests data accuracy, the processing is unlawful, and the data subject opposes erasure and requests restriction. The controller must inform data subjects before any such restriction is lifted. Under GDPR, the data subject also has the right to obtain from the controller the rectification of inaccurate personal data and to have incomplete personal data completed. Article: 22 Under PDPL, if a decision is based solely on automated processing of personal data intended to assess the data subject regarding his/her performance at work, financial standing, credit-worthiness, reliability, or conduct, then the data subject has the right to request processing in a manner that is not solely automated. This right shall not apply where the decision is taken in the course of entering into
What is the requirement for notifying the data subject of any extension under GDPR and PDPL?
Automation PrivacyCenter.Cloud
Data Mapping - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256 ], "matryoshka_weights": [ 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|
0.3571 | 10 | 4.0517 | - | - | - |
0.7143 | 20 | 2.5778 | - | - | - |
1.0 | 28 | - | 0.5304 | 0.5224 | 0.5234 |
1.0714 | 30 | 2.1161 | - | - | - |
1.4286 | 40 | 1.5394 | - | - | - |
1.7857 | 50 | 1.5162 | - | - | - |
2.0 | 56 | - | 0.5412 | 0.5382 | 0.5185 |
2.1429 | 60 | 1.202 | - | - | - |
2.5 | 70 | 1.0456 | - | - | - |
2.8571 | 80 | 1.1341 | - | - | - |
3.0 | 84 | - | 0.5340 | 0.5554 | 0.5498 |
3.2143 | 90 | 0.8724 | - | - | - |
3.5714 | 100 | 0.932 | - | - | - |
3.9286 | 110 | 0.9548 | - | - | - |
4.0 | 112 | - | 0.5296 | 0.5487 | 0.5491 |
0.3571 | 10 | 0.9958 | - | - | - |
0.7143 | 20 | 0.8264 | - | - | - |
1.0 | 28 | - | 0.5155 | 0.5250 | 0.5269 |
1.0714 | 30 | 0.7969 | - | - | - |
1.4286 | 40 | 0.6244 | - | - | - |
1.7857 | 50 | 0.6368 | - | - | - |
2.0 | 56 | - | 0.5034 | 0.5314 | 0.5233 |
2.1429 | 60 | 0.4748 | - | - | - |
2.5 | 70 | 0.4037 | - | - | - |
2.8571 | 80 | 0.4615 | - | - | - |
3.0 | 84 | - | 0.5079 | 0.5145 | 0.5155 |
3.2143 | 90 | 0.3148 | - | - | - |
3.5714 | 100 | 0.4142 | - | - | - |
3.9286 | 110 | 0.366 | - | - | - |
4.0 | 112 | - | 0.5068 | 0.5142 | 0.5167 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 16
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for MugheesAwan11/bge-base-securiti-dataset-1-v19
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.402
- Cosine Accuracy@3 on dim 768self-reported0.557
- Cosine Accuracy@5 on dim 768self-reported0.680
- Cosine Accuracy@10 on dim 768self-reported0.753
- Cosine Precision@1 on dim 768self-reported0.402
- Cosine Precision@3 on dim 768self-reported0.186
- Cosine Precision@5 on dim 768self-reported0.136
- Cosine Precision@10 on dim 768self-reported0.075
- Cosine Recall@1 on dim 768self-reported0.402
- Cosine Recall@3 on dim 768self-reported0.557