Edit model card

wav2vec2-base-intent-classification-ori-f1

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4353
  • F1: 0.875

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 45

Training results

Training Loss Epoch Step Validation Loss F1
2.19 1.0 28 2.1733 0.2708
2.1205 2.0 56 2.1125 0.2708
2.0965 3.0 84 2.0543 0.2708
1.9694 4.0 112 1.9125 0.2917
1.9091 5.0 140 1.8455 0.3542
1.8399 6.0 168 1.7895 0.3958
1.8424 7.0 196 1.8828 0.3125
1.5475 8.0 224 1.4255 0.5208
1.2653 9.0 252 1.3953 0.5417
1.1465 10.0 280 1.3501 0.5417
1.281 11.0 308 1.2800 0.5417
1.0996 12.0 336 1.2797 0.6042
1.1288 13.0 364 1.1341 0.6667
0.8577 14.0 392 1.0104 0.7083
0.8047 15.0 420 1.0906 0.6667
0.7098 16.0 448 0.9710 0.7917
0.5407 17.0 476 0.9363 0.7708
0.4634 18.0 504 0.8283 0.75
0.4368 19.0 532 0.7587 0.7708
0.2818 20.0 560 0.6551 0.8333
0.1951 21.0 588 0.5865 0.8333
0.1456 22.0 616 0.7378 0.7917
0.1269 23.0 644 0.6327 0.8333
0.0801 24.0 672 0.6896 0.8333
0.0723 25.0 700 0.7179 0.8333
0.0626 26.0 728 1.0643 0.7708
0.0434 27.0 756 0.4353 0.875
0.0499 28.0 784 0.6656 0.8333
0.0396 29.0 812 0.6788 0.8333
0.0352 30.0 840 0.8139 0.8333
0.0348 31.0 868 0.8745 0.8125
0.0313 32.0 896 0.8693 0.8125
0.0269 33.0 924 0.9393 0.8125
0.0242 34.0 952 0.9351 0.8333
0.0217 35.0 980 0.9406 0.8333
0.0234 36.0 1008 0.9464 0.8333
0.0219 37.0 1036 0.9507 0.8333
0.0215 38.0 1064 0.9471 0.8333
0.0206 39.0 1092 0.9260 0.8333
0.0229 40.0 1120 0.9420 0.8333
0.0216 41.0 1148 0.9570 0.8333
0.0227 42.0 1176 0.9573 0.8333
0.0208 43.0 1204 0.9609 0.8333
0.0201 44.0 1232 0.9617 0.8333
0.0208 45.0 1260 0.9620 0.8333

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.