|
--- |
|
language: |
|
- en |
|
- ko |
|
license: llama3.1 |
|
tags: |
|
- llama-3.1 |
|
- ncsoft |
|
- varco |
|
base_model: |
|
- meta-llama/Meta-Llama-3.1-8B |
|
library_name: transformers |
|
--- |
|
|
|
## Llama-VARCO-8B-Instruct |
|
|
|
### About the Model |
|
|
|
**Llama-VARCO-8B-Instruct** is a *generative model* built with Llama, specifically designed to excel in Korean through additional training. The model uses continual pre-training with both Korean and English datasets to enhance its understanding and generation capabilites in Korean, while also maintaining its proficiency in English. It performs supervised fine-tuning (SFT) and direct preference optimization (DPO) in Korean to align with human preferences. |
|
|
|
- **Developed by:** NC Research, Language Model Team |
|
- **Languages (NLP):** Korean, English |
|
- **License:** LLAMA 3.1 COMMUNITY LICENSE AGREEMENT |
|
- **Base model:** [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) |
|
|
|
## Uses |
|
|
|
### Direct Use |
|
|
|
We recommend to use transformers v4.43.0 or later, as advised for Llama-3.1. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"NCSOFT/Llama-VARCO-8B-Instruct", |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("NCSOFT/Llama-VARCO-8B-Instruct") |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a helpful assistant Varco. Respond accurately and diligently according to the user's instructions."}, |
|
{"role": "user", "content": "μλ
νμΈμ."} |
|
] |
|
|
|
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device) |
|
|
|
eos_token_id = [ |
|
tokenizer.eos_token_id, |
|
tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
] |
|
|
|
outputs = model.generate( |
|
inputs, |
|
eos_token_id=eos_token_id, |
|
max_length=8192 |
|
) |
|
|
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
## Evaluation |
|
|
|
### LogicKor |
|
|
|
We used the [LogicKor](https://github.com/instructkr/LogicKor) code to measure performance. For the judge model, we used the officially recommended gpt-4-1106-preview. The score includes only the 0-shot evaluation provided in the default. |
|
|
|
| Model | Math | Reasoning | Writing | Coding | Understanding | Grammer | Single turn | Multi turn | Overall | |
|
|--------------|--------|-------------|-----------|----------|-----------------|-----------|---------------|--------------|-----------| |
|
| [Llama-VARCO-8B-Instruct](https://huggingface.co/NCSOFT/Llama-VARCO-8B-Instruct)| 6.71 / 8.57 | 8.86 / 8.29 | 9.86 / 9.71 | 8.86 / 9.29 | 9.29 / 10.0 | 8.57 / 7.86 | 8.69 | 8.95 | 8.82 | |
|
| [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)| 6.86 / 7.71 | 8.57 / 6.71 | 10.0 / 9.29 | 9.43 / 10.0 | 10.0 / 10.0 | 9.57 / 5.14 | 9.07 | 8.14 | 8.61 | |
|
| [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)| 4.29 / 4.86 | 6.43 / 6.57 | 6.71 / 5.14 | 6.57 / 6.00 | 4.29 / 4.14 | 6.00 / 4.00 | 5.71 | 5.12 | 5.42 | |
|
| [Gemma-2-9B-Instruct](https://huggingface.co/google/gemma-2-9b-it)| 6.14 / 5.86 | 9.29 / 9.0 | 9.29 / 8.57 | 9.29 / 9.14 | 8.43 / 8.43 | 7.86 / 4.43 | 8.38 | 7.57 | 7.98 |
|
| [Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct)| 5.57 / 4.86 | 7.71 / 6.43 | 7.43 / 7.00 | 7.43 / 8.00 | 7.86 / 8.71 | 6.29 / 3.29 | 7.05 | 6.38 | 6.71 | |