Named entity recognition On Persian dataset
traindataset=20484 persian sentense
valdataset=2561
AutoTokenizer=HooshvareLab/bert-fa-base-uncased
ner_tags= ['O', 'B-pro', 'I-pro', 'B-pers', 'I-pers', 'B-org', 'I-org', 'B-loc', 'I-loc', 'B-fac', 'I-fac', 'B-event', 'I-event']
training_args= learning_rate=2e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=4,
weight_decay=0.01
Training Loss=0.001000
sample1: 'entity': 'B-loc', 'score': 0.9998902, 'index': 2, 'word': 'تهران',
sample2: 'entity': 'B-pers', 'score': 0.99988234, 'index': 2, 'word': 'عباس',
for use this model:
from transformers import pipeline
pipe = pipeline("token-classification", model="NLPclass/Named_entity_recognition_persian")
sentence = ""
predicted_ner = pipe(sentence)
for entity in predicted_ner:
print(f"Entity: {entity['word']}, Label: {entity['entity']}")
- Downloads last month
- 229
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.