File size: 4,415 Bytes
52937eb 10fa35d 60d2dc7 52937eb 66f6ae1 77ddca8 a969267 5d3ca7a a969267 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
---
license: mit
language:
- ce
- ru
- en
metrics:
- codeparrot/apps_metric
- accuracy
tags:
- code
---
The model uses only sign **ӏ** for explosive consonants (small cyrillic palochka letter)!
The model was teached by folloving David Dale's instructions for erzya language (https://arxiv.org/abs/2209.09368) and using code from his repository. Commentaries in Russian were left untouched.
```python
import torch
from transformers import BertTokenizer, AutoModel
import numpy as np
import pandas as pd
import razdel
import matplotlib.pyplot as plt
from tqdm.auto import tqdm, trange
```
Download the model from Huggingface repository:
```python
model_name = 'NM-development/labse-en-ru-ce-prototype'
tokenizer = BertTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
```
Assign files with the texts you want to split into parallel sentences:
```python
file_ru = None
file_nm = None
with open(file_nm, 'r') as f1, open(file_ru, 'r') as f2:
nm_text = f1.read()
ru_text = f2.read()
```
In the following section define auxillary functions for parallel sentence comparison:
```python
def embed(text):
encoded_input = tokenizer(text, padding=True, truncation=True, max_length=128, return_tensors='pt')
with torch.inference_mode():
model_output = model(**encoded_input.to(model.device))
embeddings = model_output.pooler_output
embeddings = torch.nn.functional.normalize(embeddings)
return embeddings[0].cpu().numpy()
def get_top_mean_by_row(x, k=5):
m, n = x.shape
k = min(k, n)
topk_indices = np.argpartition(x, -k, axis=1)[:, -k:]
rows, _ = np.indices((m, k))
return x[rows, topk_indices].mean(1)
def align3(sims):
rewards = np.zeros_like(sims)
choices = np.zeros_like(sims).astype(int) # 1: choose this pair, 2: decrease i, 3: decrease j
# алгоритм, разрешающий пропускать сколько угодно пар, лишь бы была монотонность
for i in range(sims.shape[0]):
for j in range(0, sims.shape[1]):
# вариант первый: выровнять i-тое предложение с j-тым
score_add = sims[i, j]
if i > 0 and j > 0: # вот как тогда выровняются предыдущие
score_add += rewards[i-1, j-1]
choices[i, j] = 1
best = score_add
if i > 0 and rewards[i-1, j] > best:
best = rewards[i-1, j]
choices[i, j] = 2
if j > 0 and rewards[i, j-1] > best:
best = rewards[i, j-1]
choices[i, j] = 3
rewards[i, j] = best
alignment = []
i = sims.shape[0] - 1
j = sims.shape[1] - 1
while i > 0 and j > 0:
if choices[i, j] == 1:
alignment.append([i, j])
i -= 1
j -= 1
elif choices[i, j] == 2:
i -= 1
else:
j -= 1
return alignment[::-1]
def make_sents(text):
sents = [s.text.replace('\n', ' ').strip() for p in text.split('\n\n') for s in razdel.sentenize(p)]
sents = [s for s in sents if s]
return sents
```
Firstly split your texts into sentences:
```python
sents_nm = make_sents(nm_text)
sents_ru = make_sents(ru_text)
```
Then embed all the chunks:
```python
emb_ru = np.stack([embed(s) for s in tqdm(sents_ru)])
emb_nm = np.stack([embed(s) for s in tqdm(sents_nm)])
```
Now compare sentenses' semanics vectors and build correlation heatmap:
```python
pen = np.array([[min(len(x), len(y)) / max(len(x), len(y)) for x in sents_nm] for y in sents_ru])
sims = np.maximum(0, np.dot(emb_ru, emb_nm.T)) ** 1 * pen
alpha = 0.2
penalty = 0.2
sims_rel = (sims.T - get_top_mean_by_row(sims) * alpha).T - get_top_mean_by_row(sims.T) * alpha - penalty
alignment = align3(sims_rel)
print(sum(sims[i, j] for i, j in alignment) / min(sims.shape))
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.imshow(sims_rel)
plt.subplot(1, 2, 2)
plt.scatter(*list(zip(*alignment)), s=5);
```
Finally, save the parallel corpus into a json file:
```python
nm_ru_parallel_corpus = pd.DataFrame({'nm_text' : [sents_nm[x[1]] for x in alignment], 'ru_text' : [sents_ru[x[0]] for x in alignment]})
corpus_filename = 'nm_ru_corpus.json'
with open(corpus_filename, 'w') as f:
nm_ru_parallel_corpus.to_json(f, force_ascii=False, indent=4)
``` |