Hungarian Aspect-based Sentiment Analysis with finetuned huBERT model
For further models, scripts and details, see our repository or our demo site.
- Pretrained model used: huBERT
- Finetuned on OpinHuBank (OHB) Corpus
- Labels: 0 (negative), 1 (neutral), 2 (positive)
- Separator: [SEP]
Limitations
- max_seq_length = 256
Results
Model | OHB |
---|---|
huBERT | 82.30 |
XLM-R | 80.59 |
Usage with pipeline
from transformers import pipeline
classification = pipeline(task="sentiment-analysis", model="NYTK/sentiment-ohb3-hubert-hungarian")
input_text = "Kovácsné Nagy Erzsébet [SEP] A Kovácsné Nagy Erzsébet nagyon jól érzi magát a Nokiánál, azonban a Németországból érkezett Kovács Péter nehezen boldogul a beilleszkedéssel."
print(classification(input_text)[0])
Citation
If you use this model, please cite the following paper:
@article {laki-yang-sentiment,
author = {Laki, László János and Yang, Zijian Győző},
title = {Sentiment Analysis with Neural Models for Hungarian},
journal = {Acta Polytechnica Hungarica},
year = {2023},
publisher = {Obuda University},
volume = {20},
number = {5},
doi = {10.12700/APH.20.5.2023.5.8},
pages= {109--128},
url = {https://acta.uni-obuda.hu/Laki_Yang_134.pdf}
}
@inproceedings {yang-asent,
title = {Neurális entitásorientált szentimentelemző alkalmazás magyar nyelvre},
booktitle = {XIX. Magyar Számítógépes Nyelvészeti Konferencia (MSZNY 2023)},
year = {2023},
publisher = {Szegedi Tudományegyetem, Informatikai Intézet},
address = {Szeged, Hungary},
author = {Yang, Zijian Győző and Laki, László János},
pages = {107--117}
}
- Downloads last month
- 109
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.