|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
import sys |
|
import tempfile |
|
|
|
import safetensors |
|
|
|
|
|
sys.path.append("..") |
|
from test_examples_utils import ExamplesTestsAccelerate, run_command |
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG) |
|
|
|
logger = logging.getLogger() |
|
stream_handler = logging.StreamHandler(sys.stdout) |
|
logger.addHandler(stream_handler) |
|
|
|
|
|
class DreamBoothLoRASD3(ExamplesTestsAccelerate): |
|
instance_data_dir = "docs/source/en/imgs" |
|
instance_prompt = "photo" |
|
pretrained_model_name_or_path = "hf-internal-testing/tiny-sd3-pipe" |
|
script_path = "examples/dreambooth/train_dreambooth_lora_sd3.py" |
|
|
|
def test_dreambooth_lora_sd3(self): |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
test_args = f""" |
|
{self.script_path} |
|
--pretrained_model_name_or_path {self.pretrained_model_name_or_path} |
|
--instance_data_dir {self.instance_data_dir} |
|
--instance_prompt {self.instance_prompt} |
|
--resolution 64 |
|
--train_batch_size 1 |
|
--gradient_accumulation_steps 1 |
|
--max_train_steps 2 |
|
--learning_rate 5.0e-04 |
|
--scale_lr |
|
--lr_scheduler constant |
|
--lr_warmup_steps 0 |
|
--output_dir {tmpdir} |
|
""".split() |
|
|
|
run_command(self._launch_args + test_args) |
|
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) |
|
|
|
|
|
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) |
|
is_lora = all("lora" in k for k in lora_state_dict.keys()) |
|
self.assertTrue(is_lora) |
|
|
|
|
|
|
|
starts_with_transformer = all(key.startswith("transformer") for key in lora_state_dict.keys()) |
|
self.assertTrue(starts_with_transformer) |
|
|
|
def test_dreambooth_lora_text_encoder_sd3(self): |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
test_args = f""" |
|
{self.script_path} |
|
--pretrained_model_name_or_path {self.pretrained_model_name_or_path} |
|
--instance_data_dir {self.instance_data_dir} |
|
--instance_prompt {self.instance_prompt} |
|
--resolution 64 |
|
--train_batch_size 1 |
|
--train_text_encoder |
|
--gradient_accumulation_steps 1 |
|
--max_train_steps 2 |
|
--learning_rate 5.0e-04 |
|
--scale_lr |
|
--lr_scheduler constant |
|
--lr_warmup_steps 0 |
|
--output_dir {tmpdir} |
|
""".split() |
|
|
|
run_command(self._launch_args + test_args) |
|
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) |
|
|
|
|
|
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) |
|
is_lora = all("lora" in k for k in lora_state_dict.keys()) |
|
self.assertTrue(is_lora) |
|
|
|
starts_with_expected_prefix = all( |
|
(key.startswith("transformer") or key.startswith("text_encoder")) for key in lora_state_dict.keys() |
|
) |
|
self.assertTrue(starts_with_expected_prefix) |
|
|
|
def test_dreambooth_lora_sd3_checkpointing_checkpoints_total_limit(self): |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
test_args = f""" |
|
{self.script_path} |
|
--pretrained_model_name_or_path={self.pretrained_model_name_or_path} |
|
--instance_data_dir={self.instance_data_dir} |
|
--output_dir={tmpdir} |
|
--instance_prompt={self.instance_prompt} |
|
--resolution=64 |
|
--train_batch_size=1 |
|
--gradient_accumulation_steps=1 |
|
--max_train_steps=6 |
|
--checkpoints_total_limit=2 |
|
--checkpointing_steps=2 |
|
""".split() |
|
|
|
run_command(self._launch_args + test_args) |
|
|
|
self.assertEqual( |
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, |
|
{"checkpoint-4", "checkpoint-6"}, |
|
) |
|
|
|
def test_dreambooth_lora_sd3_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
test_args = f""" |
|
{self.script_path} |
|
--pretrained_model_name_or_path={self.pretrained_model_name_or_path} |
|
--instance_data_dir={self.instance_data_dir} |
|
--output_dir={tmpdir} |
|
--instance_prompt={self.instance_prompt} |
|
--resolution=64 |
|
--train_batch_size=1 |
|
--gradient_accumulation_steps=1 |
|
--max_train_steps=4 |
|
--checkpointing_steps=2 |
|
""".split() |
|
|
|
run_command(self._launch_args + test_args) |
|
|
|
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4"}) |
|
|
|
resume_run_args = f""" |
|
{self.script_path} |
|
--pretrained_model_name_or_path={self.pretrained_model_name_or_path} |
|
--instance_data_dir={self.instance_data_dir} |
|
--output_dir={tmpdir} |
|
--instance_prompt={self.instance_prompt} |
|
--resolution=64 |
|
--train_batch_size=1 |
|
--gradient_accumulation_steps=1 |
|
--max_train_steps=8 |
|
--checkpointing_steps=2 |
|
--resume_from_checkpoint=checkpoint-4 |
|
--checkpoints_total_limit=2 |
|
""".split() |
|
|
|
run_command(self._launch_args + resume_run_args) |
|
|
|
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"}) |
|
|