|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Conversion script for the LDM checkpoints.""" |
|
|
|
import argparse |
|
|
|
import torch |
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection |
|
|
|
from diffusers import DDIMScheduler, I2VGenXLPipeline, I2VGenXLUNet, StableDiffusionPipeline |
|
|
|
|
|
CLIP_ID = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K" |
|
|
|
|
|
def assign_to_checkpoint( |
|
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None |
|
): |
|
""" |
|
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits |
|
attention layers, and takes into account additional replacements that may arise. |
|
|
|
Assigns the weights to the new checkpoint. |
|
""" |
|
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." |
|
|
|
|
|
if attention_paths_to_split is not None: |
|
for path, path_map in attention_paths_to_split.items(): |
|
old_tensor = old_checkpoint[path] |
|
channels = old_tensor.shape[0] // 3 |
|
|
|
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) |
|
|
|
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 |
|
|
|
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) |
|
query, key, value = old_tensor.split(channels // num_heads, dim=1) |
|
|
|
checkpoint[path_map["query"]] = query.reshape(target_shape) |
|
checkpoint[path_map["key"]] = key.reshape(target_shape) |
|
checkpoint[path_map["value"]] = value.reshape(target_shape) |
|
|
|
for path in paths: |
|
new_path = path["new"] |
|
|
|
|
|
if attention_paths_to_split is not None and new_path in attention_paths_to_split: |
|
continue |
|
|
|
if additional_replacements is not None: |
|
for replacement in additional_replacements: |
|
new_path = new_path.replace(replacement["old"], replacement["new"]) |
|
|
|
|
|
weight = old_checkpoint[path["old"]] |
|
names = ["proj_attn.weight"] |
|
names_2 = ["proj_out.weight", "proj_in.weight"] |
|
if any(k in new_path for k in names): |
|
checkpoint[new_path] = weight[:, :, 0] |
|
elif any(k in new_path for k in names_2) and len(weight.shape) > 2 and ".attentions." not in new_path: |
|
checkpoint[new_path] = weight[:, :, 0] |
|
else: |
|
checkpoint[new_path] = weight |
|
|
|
|
|
def renew_attention_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside attentions to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def shave_segments(path, n_shave_prefix_segments=1): |
|
""" |
|
Removes segments. Positive values shave the first segments, negative shave the last segments. |
|
""" |
|
if n_shave_prefix_segments >= 0: |
|
return ".".join(path.split(".")[n_shave_prefix_segments:]) |
|
else: |
|
return ".".join(path.split(".")[:n_shave_prefix_segments]) |
|
|
|
|
|
def renew_temp_conv_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside resnets to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
mapping.append({"old": old_item, "new": old_item}) |
|
|
|
return mapping |
|
|
|
|
|
def renew_resnet_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside resnets to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item.replace("in_layers.0", "norm1") |
|
new_item = new_item.replace("in_layers.2", "conv1") |
|
|
|
new_item = new_item.replace("out_layers.0", "norm2") |
|
new_item = new_item.replace("out_layers.3", "conv2") |
|
|
|
new_item = new_item.replace("emb_layers.1", "time_emb_proj") |
|
new_item = new_item.replace("skip_connection", "conv_shortcut") |
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) |
|
|
|
if "temopral_conv" not in old_item: |
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False): |
|
""" |
|
Takes a state dict and a config, and returns a converted checkpoint. |
|
""" |
|
|
|
|
|
unet_state_dict = {} |
|
keys = list(checkpoint.keys()) |
|
|
|
unet_key = "model.diffusion_model." |
|
|
|
|
|
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema: |
|
print(f"Checkpoint {path} has both EMA and non-EMA weights.") |
|
print( |
|
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA" |
|
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag." |
|
) |
|
for key in keys: |
|
if key.startswith("model.diffusion_model"): |
|
flat_ema_key = "model_ema." + "".join(key.split(".")[1:]) |
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key) |
|
else: |
|
if sum(k.startswith("model_ema") for k in keys) > 100: |
|
print( |
|
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA" |
|
" weights (usually better for inference), please make sure to add the `--extract_ema` flag." |
|
) |
|
|
|
for key in keys: |
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) |
|
|
|
new_checkpoint = {} |
|
|
|
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"] |
|
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"] |
|
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"] |
|
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"] |
|
|
|
additional_embedding_substrings = [ |
|
"local_image_concat", |
|
"context_embedding", |
|
"local_image_embedding", |
|
"fps_embedding", |
|
] |
|
for k in unet_state_dict: |
|
if any(substring in k for substring in additional_embedding_substrings): |
|
diffusers_key = k.replace("local_image_concat", "image_latents_proj_in").replace( |
|
"local_image_embedding", "image_latents_context_embedding" |
|
) |
|
new_checkpoint[diffusers_key] = unet_state_dict[k] |
|
|
|
|
|
new_checkpoint["image_latents_temporal_encoder.norm1.weight"] = unet_state_dict[ |
|
"local_temporal_encoder.layers.0.0.norm.weight" |
|
] |
|
new_checkpoint["image_latents_temporal_encoder.norm1.bias"] = unet_state_dict[ |
|
"local_temporal_encoder.layers.0.0.norm.bias" |
|
] |
|
|
|
|
|
qkv = unet_state_dict["local_temporal_encoder.layers.0.0.fn.to_qkv.weight"] |
|
q, k, v = torch.chunk(qkv, 3, dim=0) |
|
new_checkpoint["image_latents_temporal_encoder.attn1.to_q.weight"] = q |
|
new_checkpoint["image_latents_temporal_encoder.attn1.to_k.weight"] = k |
|
new_checkpoint["image_latents_temporal_encoder.attn1.to_v.weight"] = v |
|
new_checkpoint["image_latents_temporal_encoder.attn1.to_out.0.weight"] = unet_state_dict[ |
|
"local_temporal_encoder.layers.0.0.fn.to_out.0.weight" |
|
] |
|
new_checkpoint["image_latents_temporal_encoder.attn1.to_out.0.bias"] = unet_state_dict[ |
|
"local_temporal_encoder.layers.0.0.fn.to_out.0.bias" |
|
] |
|
|
|
|
|
new_checkpoint["image_latents_temporal_encoder.ff.net.0.proj.weight"] = unet_state_dict[ |
|
"local_temporal_encoder.layers.0.1.net.0.0.weight" |
|
] |
|
new_checkpoint["image_latents_temporal_encoder.ff.net.0.proj.bias"] = unet_state_dict[ |
|
"local_temporal_encoder.layers.0.1.net.0.0.bias" |
|
] |
|
new_checkpoint["image_latents_temporal_encoder.ff.net.2.weight"] = unet_state_dict[ |
|
"local_temporal_encoder.layers.0.1.net.2.weight" |
|
] |
|
new_checkpoint["image_latents_temporal_encoder.ff.net.2.bias"] = unet_state_dict[ |
|
"local_temporal_encoder.layers.0.1.net.2.bias" |
|
] |
|
|
|
if "class_embed_type" in config: |
|
if config["class_embed_type"] is None: |
|
|
|
... |
|
elif config["class_embed_type"] == "timestep" or config["class_embed_type"] == "projection": |
|
new_checkpoint["class_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"] |
|
new_checkpoint["class_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"] |
|
new_checkpoint["class_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"] |
|
new_checkpoint["class_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"] |
|
else: |
|
raise NotImplementedError(f"Not implemented `class_embed_type`: {config['class_embed_type']}") |
|
|
|
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] |
|
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] |
|
|
|
first_temp_attention = [v for v in unet_state_dict if v.startswith("input_blocks.0.1")] |
|
paths = renew_attention_paths(first_temp_attention) |
|
meta_path = {"old": "input_blocks.0.1", "new": "transformer_in"} |
|
assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] |
|
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] |
|
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] |
|
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] |
|
|
|
|
|
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) |
|
input_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] |
|
for layer_id in range(num_input_blocks) |
|
} |
|
|
|
|
|
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) |
|
middle_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] |
|
for layer_id in range(num_middle_blocks) |
|
} |
|
|
|
|
|
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) |
|
output_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] |
|
for layer_id in range(num_output_blocks) |
|
} |
|
|
|
for i in range(1, num_input_blocks): |
|
block_id = (i - 1) // (config["layers_per_block"] + 1) |
|
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) |
|
|
|
resnets = [ |
|
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key |
|
] |
|
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] |
|
temp_attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.2" in key] |
|
|
|
if f"input_blocks.{i}.op.weight" in unet_state_dict: |
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( |
|
f"input_blocks.{i}.op.weight" |
|
) |
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( |
|
f"input_blocks.{i}.op.bias" |
|
) |
|
|
|
paths = renew_resnet_paths(resnets) |
|
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
temporal_convs = [key for key in resnets if "temopral_conv" in key] |
|
paths = renew_temp_conv_paths(temporal_convs) |
|
meta_path = { |
|
"old": f"input_blocks.{i}.0.temopral_conv", |
|
"new": f"down_blocks.{block_id}.temp_convs.{layer_in_block_id}", |
|
} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
if len(attentions): |
|
paths = renew_attention_paths(attentions) |
|
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
if len(temp_attentions): |
|
paths = renew_attention_paths(temp_attentions) |
|
meta_path = { |
|
"old": f"input_blocks.{i}.2", |
|
"new": f"down_blocks.{block_id}.temp_attentions.{layer_in_block_id}", |
|
} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
resnet_0 = middle_blocks[0] |
|
temporal_convs_0 = [key for key in resnet_0 if "temopral_conv" in key] |
|
attentions = middle_blocks[1] |
|
temp_attentions = middle_blocks[2] |
|
resnet_1 = middle_blocks[3] |
|
temporal_convs_1 = [key for key in resnet_1 if "temopral_conv" in key] |
|
|
|
resnet_0_paths = renew_resnet_paths(resnet_0) |
|
meta_path = {"old": "middle_block.0", "new": "mid_block.resnets.0"} |
|
assign_to_checkpoint( |
|
resnet_0_paths, new_checkpoint, unet_state_dict, config=config, additional_replacements=[meta_path] |
|
) |
|
|
|
temp_conv_0_paths = renew_temp_conv_paths(temporal_convs_0) |
|
meta_path = {"old": "middle_block.0.temopral_conv", "new": "mid_block.temp_convs.0"} |
|
assign_to_checkpoint( |
|
temp_conv_0_paths, new_checkpoint, unet_state_dict, config=config, additional_replacements=[meta_path] |
|
) |
|
|
|
resnet_1_paths = renew_resnet_paths(resnet_1) |
|
meta_path = {"old": "middle_block.3", "new": "mid_block.resnets.1"} |
|
assign_to_checkpoint( |
|
resnet_1_paths, new_checkpoint, unet_state_dict, config=config, additional_replacements=[meta_path] |
|
) |
|
|
|
temp_conv_1_paths = renew_temp_conv_paths(temporal_convs_1) |
|
meta_path = {"old": "middle_block.3.temopral_conv", "new": "mid_block.temp_convs.1"} |
|
assign_to_checkpoint( |
|
temp_conv_1_paths, new_checkpoint, unet_state_dict, config=config, additional_replacements=[meta_path] |
|
) |
|
|
|
attentions_paths = renew_attention_paths(attentions) |
|
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} |
|
assign_to_checkpoint( |
|
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
temp_attentions_paths = renew_attention_paths(temp_attentions) |
|
meta_path = {"old": "middle_block.2", "new": "mid_block.temp_attentions.0"} |
|
assign_to_checkpoint( |
|
temp_attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
for i in range(num_output_blocks): |
|
block_id = i // (config["layers_per_block"] + 1) |
|
layer_in_block_id = i % (config["layers_per_block"] + 1) |
|
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] |
|
output_block_list = {} |
|
|
|
for layer in output_block_layers: |
|
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) |
|
if layer_id in output_block_list: |
|
output_block_list[layer_id].append(layer_name) |
|
else: |
|
output_block_list[layer_id] = [layer_name] |
|
|
|
if len(output_block_list) > 1: |
|
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] |
|
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] |
|
temp_attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.2" in key] |
|
|
|
resnet_0_paths = renew_resnet_paths(resnets) |
|
paths = renew_resnet_paths(resnets) |
|
|
|
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
temporal_convs = [key for key in resnets if "temopral_conv" in key] |
|
paths = renew_temp_conv_paths(temporal_convs) |
|
meta_path = { |
|
"old": f"output_blocks.{i}.0.temopral_conv", |
|
"new": f"up_blocks.{block_id}.temp_convs.{layer_in_block_id}", |
|
} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
output_block_list = {k: sorted(v) for k, v in output_block_list.items()} |
|
if ["conv.bias", "conv.weight"] in output_block_list.values(): |
|
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"]) |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ |
|
f"output_blocks.{i}.{index}.conv.weight" |
|
] |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ |
|
f"output_blocks.{i}.{index}.conv.bias" |
|
] |
|
|
|
|
|
if len(attentions) == 2: |
|
attentions = [] |
|
|
|
if len(attentions): |
|
paths = renew_attention_paths(attentions) |
|
meta_path = { |
|
"old": f"output_blocks.{i}.1", |
|
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", |
|
} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
if len(temp_attentions): |
|
paths = renew_attention_paths(temp_attentions) |
|
meta_path = { |
|
"old": f"output_blocks.{i}.2", |
|
"new": f"up_blocks.{block_id}.temp_attentions.{layer_in_block_id}", |
|
} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
else: |
|
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) |
|
for path in resnet_0_paths: |
|
old_path = ".".join(["output_blocks", str(i), path["old"]]) |
|
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) |
|
new_checkpoint[new_path] = unet_state_dict[old_path] |
|
|
|
temopral_conv_paths = [l for l in output_block_layers if "temopral_conv" in l] |
|
for path in temopral_conv_paths: |
|
pruned_path = path.split("temopral_conv.")[-1] |
|
old_path = ".".join(["output_blocks", str(i), str(block_id), "temopral_conv", pruned_path]) |
|
new_path = ".".join(["up_blocks", str(block_id), "temp_convs", str(layer_in_block_id), pruned_path]) |
|
new_checkpoint[new_path] = unet_state_dict[old_path] |
|
|
|
return new_checkpoint |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--unet_checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." |
|
) |
|
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") |
|
parser.add_argument("--push_to_hub", action="store_true") |
|
args = parser.parse_args() |
|
|
|
|
|
unet_checkpoint = torch.load(args.unet_checkpoint_path, map_location="cpu") |
|
unet_checkpoint = unet_checkpoint["state_dict"] |
|
unet = I2VGenXLUNet(sample_size=32) |
|
|
|
converted_ckpt = convert_ldm_unet_checkpoint(unet_checkpoint, unet.config) |
|
|
|
diff_0 = set(unet.state_dict().keys()) - set(converted_ckpt.keys()) |
|
diff_1 = set(converted_ckpt.keys()) - set(unet.state_dict().keys()) |
|
|
|
assert len(diff_0) == len(diff_1) == 0, "Converted weights don't match" |
|
|
|
unet.load_state_dict(converted_ckpt, strict=True) |
|
|
|
|
|
temp_pipe = StableDiffusionPipeline.from_single_file( |
|
"https://huggingface.co/ali-vilab/i2vgen-xl/blob/main/models/v2-1_512-ema-pruned.ckpt" |
|
) |
|
vae = temp_pipe.vae |
|
del temp_pipe |
|
|
|
|
|
text_encoder = CLIPTextModel.from_pretrained(CLIP_ID) |
|
tokenizer = CLIPTokenizer.from_pretrained(CLIP_ID) |
|
|
|
|
|
image_encoder = CLIPVisionModelWithProjection.from_pretrained(CLIP_ID) |
|
feature_extractor = CLIPImageProcessor.from_pretrained(CLIP_ID) |
|
|
|
|
|
|
|
scheduler = DDIMScheduler( |
|
beta_schedule="squaredcos_cap_v2", |
|
rescale_betas_zero_snr=True, |
|
set_alpha_to_one=True, |
|
clip_sample=False, |
|
steps_offset=1, |
|
timestep_spacing="leading", |
|
prediction_type="v_prediction", |
|
) |
|
|
|
|
|
pipeline = I2VGenXLPipeline( |
|
unet=unet, |
|
vae=vae, |
|
image_encoder=image_encoder, |
|
feature_extractor=feature_extractor, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
scheduler=scheduler, |
|
) |
|
|
|
pipeline.save_pretrained(args.dump_path, push_to_hub=args.push_to_hub) |
|
|