Nagarjunan's picture
Training complete
d871018 verified
|
raw
history blame
2.25 kB
---
library_name: transformers
license: apache-2.0
base_model: google/mt5-small
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-amazon-en-es
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-finetuned-amazon-en-es
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 13.0523
- Rouge1: 0.6901
- Rouge2: 0.0
- Rougel: 0.7131
- Rougelsum: 0.6901
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 20.4138 | 1.0 | 11 | 17.0350 | 0.3221 | 0.0 | 0.3221 | 0.3221 |
| 20.9666 | 2.0 | 22 | 15.8389 | 0.3221 | 0.0 | 0.3221 | 0.3221 |
| 20.3285 | 3.0 | 33 | 14.7984 | 0.6901 | 0.0 | 0.7131 | 0.6901 |
| 20.2575 | 4.0 | 44 | 13.7555 | 0.6901 | 0.0 | 0.7131 | 0.6901 |
| 19.3567 | 5.0 | 55 | 13.0846 | 0.6901 | 0.0 | 0.7131 | 0.6901 |
| 19.568 | 6.0 | 66 | 13.0045 | 0.6901 | 0.0 | 0.7131 | 0.6901 |
| 18.6292 | 7.0 | 77 | 13.0753 | 0.3221 | 0.0 | 0.3221 | 0.3221 |
| 18.4457 | 8.0 | 88 | 13.0523 | 0.6901 | 0.0 | 0.7131 | 0.6901 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3