|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-amazon-en-es |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-amazon-en-es |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 13.0523 |
|
- Rouge1: 0.6901 |
|
- Rouge2: 0.0 |
|
- Rougel: 0.7131 |
|
- Rougelsum: 0.6901 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 20.4138 | 1.0 | 11 | 17.0350 | 0.3221 | 0.0 | 0.3221 | 0.3221 | |
|
| 20.9666 | 2.0 | 22 | 15.8389 | 0.3221 | 0.0 | 0.3221 | 0.3221 | |
|
| 20.3285 | 3.0 | 33 | 14.7984 | 0.6901 | 0.0 | 0.7131 | 0.6901 | |
|
| 20.2575 | 4.0 | 44 | 13.7555 | 0.6901 | 0.0 | 0.7131 | 0.6901 | |
|
| 19.3567 | 5.0 | 55 | 13.0846 | 0.6901 | 0.0 | 0.7131 | 0.6901 | |
|
| 19.568 | 6.0 | 66 | 13.0045 | 0.6901 | 0.0 | 0.7131 | 0.6901 | |
|
| 18.6292 | 7.0 | 77 | 13.0753 | 0.3221 | 0.0 | 0.3221 | 0.3221 | |
|
| 18.4457 | 8.0 | 88 | 13.0523 | 0.6901 | 0.0 | 0.7131 | 0.6901 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|