BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Naruke/bge-base-financial-matryoshka")
# Run inference
sentences = [
'As part of our solar energy system and energy storage contracts, we may provide the customer with performance guarantees that commit that the underlying system will meet or exceed the minimum energy generation or performance requirements specified in the contract.',
'What types of guarantees does Tesla provide to its solar and energy storage customers?',
'How many full-time employees did Microsoft report as of June 30, 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.71 |
cosine_accuracy@3 | 0.84 |
cosine_accuracy@5 | 0.8686 |
cosine_accuracy@10 | 0.9143 |
cosine_precision@1 | 0.71 |
cosine_precision@3 | 0.28 |
cosine_precision@5 | 0.1737 |
cosine_precision@10 | 0.0914 |
cosine_recall@1 | 0.71 |
cosine_recall@3 | 0.84 |
cosine_recall@5 | 0.8686 |
cosine_recall@10 | 0.9143 |
cosine_ndcg@10 | 0.8125 |
cosine_mrr@10 | 0.7798 |
cosine_map@100 | 0.7826 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7043 |
cosine_accuracy@3 | 0.8357 |
cosine_accuracy@5 | 0.8657 |
cosine_accuracy@10 | 0.9114 |
cosine_precision@1 | 0.7043 |
cosine_precision@3 | 0.2786 |
cosine_precision@5 | 0.1731 |
cosine_precision@10 | 0.0911 |
cosine_recall@1 | 0.7043 |
cosine_recall@3 | 0.8357 |
cosine_recall@5 | 0.8657 |
cosine_recall@10 | 0.9114 |
cosine_ndcg@10 | 0.8078 |
cosine_mrr@10 | 0.7745 |
cosine_map@100 | 0.7776 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7029 |
cosine_accuracy@3 | 0.8229 |
cosine_accuracy@5 | 0.8586 |
cosine_accuracy@10 | 0.8971 |
cosine_precision@1 | 0.7029 |
cosine_precision@3 | 0.2743 |
cosine_precision@5 | 0.1717 |
cosine_precision@10 | 0.0897 |
cosine_recall@1 | 0.7029 |
cosine_recall@3 | 0.8229 |
cosine_recall@5 | 0.8586 |
cosine_recall@10 | 0.8971 |
cosine_ndcg@10 | 0.8004 |
cosine_mrr@10 | 0.7693 |
cosine_map@100 | 0.7733 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6771 |
cosine_accuracy@3 | 0.8143 |
cosine_accuracy@5 | 0.8543 |
cosine_accuracy@10 | 0.8971 |
cosine_precision@1 | 0.6771 |
cosine_precision@3 | 0.2714 |
cosine_precision@5 | 0.1709 |
cosine_precision@10 | 0.0897 |
cosine_recall@1 | 0.6771 |
cosine_recall@3 | 0.8143 |
cosine_recall@5 | 0.8543 |
cosine_recall@10 | 0.8971 |
cosine_ndcg@10 | 0.7887 |
cosine_mrr@10 | 0.7538 |
cosine_map@100 | 0.7573 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6643 |
cosine_accuracy@3 | 0.7814 |
cosine_accuracy@5 | 0.8129 |
cosine_accuracy@10 | 0.86 |
cosine_precision@1 | 0.6643 |
cosine_precision@3 | 0.2605 |
cosine_precision@5 | 0.1626 |
cosine_precision@10 | 0.086 |
cosine_recall@1 | 0.6643 |
cosine_recall@3 | 0.7814 |
cosine_recall@5 | 0.8129 |
cosine_recall@10 | 0.86 |
cosine_ndcg@10 | 0.76 |
cosine_mrr@10 | 0.7283 |
cosine_map@100 | 0.7331 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 9 tokens
- mean: 45.57 tokens
- max: 289 tokens
- min: 9 tokens
- mean: 20.32 tokens
- max: 51 tokens
- Samples:
positive anchor The detailed information about commitments and contingencies related to legal proceedings is included under Note 13 in Part II, Item 8 of the Annual Report.
Where can detailed information about the commitments and contingencies related to legal proceedings be found in the Annual Report on Form 10-K?
American Express's decision to reinvest gains into its business will depend on regulatory and other approvals, consultation requirements, the execution of ancillary agreements, the cost and availability of financing for the purchaser to fund the transaction and the potential loss of key customers, vendors and other business partners and management’s decisions regarding future operations, strategies and business initiatives.
What factors influence American Express's decision to reinvest gains into its business?
Lease obligations as of June 30, 2023, related to office space and various facilities totaled $883.1 million, with lease terms ranging from one to 21 years and are mostly renewable.
How much were lease obligations related to office space and other facilities as of June 30, 2023, and what were the terms?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 16per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 2lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.4061 | 10 | 0.9835 | - | - | - | - | - |
0.8122 | 20 | 0.4319 | - | - | - | - | - |
0.9746 | 24 | - | 0.7541 | 0.7729 | 0.7738 | 0.7242 | 0.7786 |
1.2183 | 30 | 0.3599 | - | - | - | - | - |
1.6244 | 40 | 0.2596 | - | - | - | - | - |
1.9492 | 48 | - | 0.7573 | 0.7733 | 0.7776 | 0.7331 | 0.7826 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Naruke/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.710
- Cosine Accuracy@3 on dim 768self-reported0.840
- Cosine Accuracy@5 on dim 768self-reported0.869
- Cosine Accuracy@10 on dim 768self-reported0.914
- Cosine Precision@1 on dim 768self-reported0.710
- Cosine Precision@3 on dim 768self-reported0.280
- Cosine Precision@5 on dim 768self-reported0.174
- Cosine Precision@10 on dim 768self-reported0.091
- Cosine Recall@1 on dim 768self-reported0.710
- Cosine Recall@3 on dim 768self-reported0.840