wav2vec2-base-finetuned-gtzan

This model is a fine-tuned version of facebook/wav2vec2-base on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7472
  • Accuracy: 0.81

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy Validation Loss
2.2042 1.0 112 0.27 2.1274
1.7875 2.0 225 0.51 1.6840
1.4927 3.0 337 0.57 1.3809
1.2344 4.0 450 0.64 1.2021
1.2579 5.0 562 0.62 1.1646
0.9661 6.0 675 0.65 1.0412
1.0119 7.0 787 0.74 0.8671
0.8629 8.0 900 0.66 0.9364
0.607 9.0 1012 0.75 0.8867
0.5699 10.0 1125 0.78 0.7432
0.5128 11.0 1237 0.76 0.8212
0.4203 12.0 1350 0.77 0.8128
0.348 13.0 1462 0.81 0.7472
0.3869 14.0 1575 0.8 0.7456
0.2129 14.93 1680 0.79 0.7243

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
14
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for NathanClonts/wav2vec2-base-finetuned-gtzan

Finetuned
(681)
this model

Dataset used to train NathanClonts/wav2vec2-base-finetuned-gtzan

Evaluation results