File size: 10,072 Bytes
645db96
11238cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
645db96
11238cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
---
library_name: setfit
tags:
- setfit
- absa
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: The food at Cafe Asean:The food at Cafe Asean is to die for, and the prices
    are unmatchable.
- text: its a cool place to come with:its a cool place to come with a bunch of people
    or with a date for maybe a mild dinner or some drinks.
- text: times, the food is always good:Although the service can be a bit brusque at
    times, the food is always good, hearty and hot.
- text: we found the food to be so:Came recommended to us, but we found the food to
    be so-so, the service good, but we were told we could not order desert since the
    table we were at had a reservation waiting.
- text: warned that this place can get pretty:Be warned that this place can get pretty
    crowded, though the $3 bloody mary's at the bar and the killer DJ make the wait
    more than bearable.
pipeline_tag: text-classification
inference: false
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
- name: SetFit Polarity Model with sentence-transformers/paraphrase-mpnet-base-v2
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.45161290322580644
      name: Accuracy
---

# SetFit Polarity Model with sentence-transformers/paraphrase-mpnet-base-v2

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

This model was trained within the context of a larger system for ABSA, which looks like so:

1. Use a spaCy model to select possible aspect span candidates.
2. Use a SetFit model to filter these possible aspect span candidates.
3. **Use this SetFit model to classify the filtered aspect span candidates.**

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **spaCy Model:** en_core_web_lg
- **SetFitABSA Aspect Model:** [NazmusAshrafi/mams-ds-setfit-MiniLM-mpnet-absa-tesla-tweet-aspect](https://huggingface.co/NazmusAshrafi/mams-ds-setfit-MiniLM-mpnet-absa-tesla-tweet-aspect)
- **SetFitABSA Polarity Model:** [NazmusAshrafi/mams-ds-setfit-MiniLM-mpnet-absa-tesla-tweet-polarity](https://huggingface.co/NazmusAshrafi/mams-ds-setfit-MiniLM-mpnet-absa-tesla-tweet-polarity)
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label    | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|:---------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| positive | <ul><li>"best sit down food I've had:It might be the best sit down food I've had in the area, so if you are going to the upright citizen brigade, or the garden, it could be just the place for you."</li><li>'generous and the staff brings out multiple:Portions are fairly generous and the staff brings out multiple little bites and treats throughout dinner.'</li><li>'casual Middle Eastern menu looks familar,:The Food The casual Middle Eastern menu looks familar, but the food--made to order in the open kitchen--is a notch above its peers.'</li></ul> |
| neutral  | <ul><li>"be just the place for you.:It might be the best sit down food I've had in the area, so if you are going to the upright citizen brigade, or the garden, it could be just the place for you."</li><li>') other food is served in:) other food is served in too-small portions, but at least it leaves room for dessert.'</li><li>"room while the food on other peoples:Upon entering, I was impressed by the room while the food on other peoples' tables seemed enticing."</li></ul>                                                                           |
| negative | <ul><li>'Though the service might be a:Though the service might be a little slow, the waitresses are very friendly.'</li><li>'was expecting poor service and ambience but:After reading other reviews I was expecting poor service and ambience but was pleasantly surprised by our more than helpful waiter.'</li><li>'we found the food to be so:Came recommended to us, but we found the food to be so-so, the service good, but we were told we could not order desert since the table we were at had a reservation waiting.'</li></ul>                            |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.4516   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import AbsaModel

# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
    "NazmusAshrafi/mams-ds-setfit-MiniLM-mpnet-absa-tesla-tweet-aspect",
    "NazmusAshrafi/mams-ds-setfit-MiniLM-mpnet-absa-tesla-tweet-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 17  | 28.6364 | 53  |

| Label    | Training Sample Count |
|:---------|:----------------------|
| negative | 10                    |
| neutral  | 12                    |
| positive | 11                    |

### Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 16)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0217 | 1    | 0.2212        | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.4.0
- spaCy: 3.7.4
- Transformers: 4.37.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.17.1
- Tokenizers: 0.15.2

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->