SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
1.0 |
|
0.0 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9648 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Netta1994/setfit_e1_bz16_ni0_sz2500")
# Run inference
preds = model("The author clearly cites it as a Reddit thread. In a scholastic paper, you would be expected to have a bit more original content, but you wouldn't 'get in trouble' ")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 85.3087 | 792 |
Label | Training Sample Count |
---|---|
0.0 | 1979 |
1.0 | 2546 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0001 | 1 | 0.3787 | - |
0.0044 | 50 | 0.3135 | - |
0.0088 | 100 | 0.1365 | - |
0.0133 | 150 | 0.083 | - |
0.0177 | 200 | 0.1555 | - |
0.0221 | 250 | 0.0407 | - |
0.0265 | 300 | 0.0127 | - |
0.0309 | 350 | 0.0313 | - |
0.0354 | 400 | 0.0782 | - |
0.0398 | 450 | 0.148 | - |
0.0442 | 500 | 0.0396 | - |
0.0486 | 550 | 0.0747 | - |
0.0530 | 600 | 0.0255 | - |
0.0575 | 650 | 0.0098 | - |
0.0619 | 700 | 0.0532 | - |
0.0663 | 750 | 0.0006 | - |
0.0707 | 800 | 0.1454 | - |
0.0751 | 850 | 0.055 | - |
0.0796 | 900 | 0.0008 | - |
0.0840 | 950 | 0.0495 | - |
0.0884 | 1000 | 0.0195 | - |
0.0928 | 1050 | 0.1155 | - |
0.0972 | 1100 | 0.0024 | - |
0.1017 | 1150 | 0.0555 | - |
0.1061 | 1200 | 0.0612 | - |
0.1105 | 1250 | 0.0013 | - |
0.1149 | 1300 | 0.0004 | - |
0.1193 | 1350 | 0.061 | - |
0.1238 | 1400 | 0.0003 | - |
0.1282 | 1450 | 0.0014 | - |
0.1326 | 1500 | 0.0004 | - |
0.1370 | 1550 | 0.0575 | - |
0.1414 | 1600 | 0.0005 | - |
0.1458 | 1650 | 0.0656 | - |
0.1503 | 1700 | 0.0002 | - |
0.1547 | 1750 | 0.0008 | - |
0.1591 | 1800 | 0.0606 | - |
0.1635 | 1850 | 0.0478 | - |
0.1679 | 1900 | 0.0616 | - |
0.1724 | 1950 | 0.0009 | - |
0.1768 | 2000 | 0.0003 | - |
0.1812 | 2050 | 0.0004 | - |
0.1856 | 2100 | 0.0002 | - |
0.1900 | 2150 | 0.0001 | - |
0.1945 | 2200 | 0.0001 | - |
0.1989 | 2250 | 0.0001 | - |
0.2033 | 2300 | 0.0001 | - |
0.2077 | 2350 | 0.0001 | - |
0.2121 | 2400 | 0.0002 | - |
0.2166 | 2450 | 0.0002 | - |
0.2210 | 2500 | 0.0005 | - |
0.2254 | 2550 | 0.0001 | - |
0.2298 | 2600 | 0.0005 | - |
0.2342 | 2650 | 0.0002 | - |
0.2387 | 2700 | 0.0605 | - |
0.2431 | 2750 | 0.0004 | - |
0.2475 | 2800 | 0.0002 | - |
0.2519 | 2850 | 0.0004 | - |
0.2563 | 2900 | 0.0 | - |
0.2608 | 2950 | 0.0001 | - |
0.2652 | 3000 | 0.0004 | - |
0.2696 | 3050 | 0.0002 | - |
0.2740 | 3100 | 0.0004 | - |
0.2784 | 3150 | 0.0001 | - |
0.2829 | 3200 | 0.0514 | - |
0.2873 | 3250 | 0.0005 | - |
0.2917 | 3300 | 0.0581 | - |
0.2961 | 3350 | 0.0004 | - |
0.3005 | 3400 | 0.0001 | - |
0.3050 | 3450 | 0.0002 | - |
0.3094 | 3500 | 0.0009 | - |
0.3138 | 3550 | 0.0001 | - |
0.3182 | 3600 | 0.0 | - |
0.3226 | 3650 | 0.0019 | - |
0.3271 | 3700 | 0.0 | - |
0.3315 | 3750 | 0.0007 | - |
0.3359 | 3800 | 0.0001 | - |
0.3403 | 3850 | 0.0 | - |
0.3447 | 3900 | 0.0075 | - |
0.3492 | 3950 | 0.0 | - |
0.3536 | 4000 | 0.0008 | - |
0.3580 | 4050 | 0.0001 | - |
0.3624 | 4100 | 0.0 | - |
0.3668 | 4150 | 0.0002 | - |
0.3713 | 4200 | 0.0 | - |
0.3757 | 4250 | 0.0 | - |
0.3801 | 4300 | 0.0 | - |
0.3845 | 4350 | 0.0 | - |
0.3889 | 4400 | 0.0001 | - |
0.3934 | 4450 | 0.0001 | - |
0.3978 | 4500 | 0.0 | - |
0.4022 | 4550 | 0.0001 | - |
0.4066 | 4600 | 0.0001 | - |
0.4110 | 4650 | 0.0001 | - |
0.4155 | 4700 | 0.0 | - |
0.4199 | 4750 | 0.0 | - |
0.4243 | 4800 | 0.0 | - |
0.4287 | 4850 | 0.0005 | - |
0.4331 | 4900 | 0.0007 | - |
0.4375 | 4950 | 0.0 | - |
0.4420 | 5000 | 0.0 | - |
0.4464 | 5050 | 0.0003 | - |
0.4508 | 5100 | 0.0 | - |
0.4552 | 5150 | 0.0 | - |
0.4596 | 5200 | 0.0001 | - |
0.4641 | 5250 | 0.0 | - |
0.4685 | 5300 | 0.0 | - |
0.4729 | 5350 | 0.0 | - |
0.4773 | 5400 | 0.0 | - |
0.4817 | 5450 | 0.0 | - |
0.4862 | 5500 | 0.0 | - |
0.4906 | 5550 | 0.0 | - |
0.4950 | 5600 | 0.0 | - |
0.4994 | 5650 | 0.0001 | - |
0.5038 | 5700 | 0.0 | - |
0.5083 | 5750 | 0.0001 | - |
0.5127 | 5800 | 0.0 | - |
0.5171 | 5850 | 0.0 | - |
0.5215 | 5900 | 0.0 | - |
0.5259 | 5950 | 0.0 | - |
0.5304 | 6000 | 0.0 | - |
0.5348 | 6050 | 0.0 | - |
0.5392 | 6100 | 0.0 | - |
0.5436 | 6150 | 0.0 | - |
0.5480 | 6200 | 0.0 | - |
0.5525 | 6250 | 0.0 | - |
0.5569 | 6300 | 0.0 | - |
0.5613 | 6350 | 0.0001 | - |
0.5657 | 6400 | 0.0001 | - |
0.5701 | 6450 | 0.0 | - |
0.5746 | 6500 | 0.0 | - |
0.5790 | 6550 | 0.0 | - |
0.5834 | 6600 | 0.0 | - |
0.5878 | 6650 | 0.0 | - |
0.5922 | 6700 | 0.0 | - |
0.5967 | 6750 | 0.0 | - |
0.6011 | 6800 | 0.0 | - |
0.6055 | 6850 | 0.0 | - |
0.6099 | 6900 | 0.0 | - |
0.6143 | 6950 | 0.0 | - |
0.6188 | 7000 | 0.0 | - |
0.6232 | 7050 | 0.0 | - |
0.6276 | 7100 | 0.0 | - |
0.6320 | 7150 | 0.0 | - |
0.6364 | 7200 | 0.0 | - |
0.6409 | 7250 | 0.0 | - |
0.6453 | 7300 | 0.0 | - |
0.6497 | 7350 | 0.0 | - |
0.6541 | 7400 | 0.0 | - |
0.6585 | 7450 | 0.0 | - |
0.6630 | 7500 | 0.0 | - |
0.6674 | 7550 | 0.0 | - |
0.6718 | 7600 | 0.0 | - |
0.6762 | 7650 | 0.0 | - |
0.6806 | 7700 | 0.0 | - |
0.6851 | 7750 | 0.0 | - |
0.6895 | 7800 | 0.0 | - |
0.6939 | 7850 | 0.0 | - |
0.6983 | 7900 | 0.0 | - |
0.7027 | 7950 | 0.0 | - |
0.7072 | 8000 | 0.0 | - |
0.7116 | 8050 | 0.0 | - |
0.7160 | 8100 | 0.0 | - |
0.7204 | 8150 | 0.0 | - |
0.7248 | 8200 | 0.0 | - |
0.7292 | 8250 | 0.0 | - |
0.7337 | 8300 | 0.0 | - |
0.7381 | 8350 | 0.0 | - |
0.7425 | 8400 | 0.0 | - |
0.7469 | 8450 | 0.0001 | - |
0.7513 | 8500 | 0.0 | - |
0.7558 | 8550 | 0.0 | - |
0.7602 | 8600 | 0.0 | - |
0.7646 | 8650 | 0.0 | - |
0.7690 | 8700 | 0.0 | - |
0.7734 | 8750 | 0.0 | - |
0.7779 | 8800 | 0.0 | - |
0.7823 | 8850 | 0.0 | - |
0.7867 | 8900 | 0.0 | - |
0.7911 | 8950 | 0.0 | - |
0.7955 | 9000 | 0.0 | - |
0.8000 | 9050 | 0.0 | - |
0.8044 | 9100 | 0.0 | - |
0.8088 | 9150 | 0.0 | - |
0.8132 | 9200 | 0.0 | - |
0.8176 | 9250 | 0.0 | - |
0.8221 | 9300 | 0.0 | - |
0.8265 | 9350 | 0.0 | - |
0.8309 | 9400 | 0.0 | - |
0.8353 | 9450 | 0.0 | - |
0.8397 | 9500 | 0.0 | - |
0.8442 | 9550 | 0.0 | - |
0.8486 | 9600 | 0.0 | - |
0.8530 | 9650 | 0.0 | - |
0.8574 | 9700 | 0.0 | - |
0.8618 | 9750 | 0.0 | - |
0.8663 | 9800 | 0.0 | - |
0.8707 | 9850 | 0.0001 | - |
0.8751 | 9900 | 0.0 | - |
0.8795 | 9950 | 0.0 | - |
0.8839 | 10000 | 0.0 | - |
0.8884 | 10050 | 0.0 | - |
0.8928 | 10100 | 0.0 | - |
0.8972 | 10150 | 0.0 | - |
0.9016 | 10200 | 0.0 | - |
0.9060 | 10250 | 0.0 | - |
0.9105 | 10300 | 0.0 | - |
0.9149 | 10350 | 0.0 | - |
0.9193 | 10400 | 0.0 | - |
0.9237 | 10450 | 0.0 | - |
0.9281 | 10500 | 0.0 | - |
0.9326 | 10550 | 0.0 | - |
0.9370 | 10600 | 0.0 | - |
0.9414 | 10650 | 0.0 | - |
0.9458 | 10700 | 0.0 | - |
0.9502 | 10750 | 0.0 | - |
0.9547 | 10800 | 0.0 | - |
0.9591 | 10850 | 0.0 | - |
0.9635 | 10900 | 0.0 | - |
0.9679 | 10950 | 0.0 | - |
0.9723 | 11000 | 0.0 | - |
0.9768 | 11050 | 0.0 | - |
0.9812 | 11100 | 0.0 | - |
0.9856 | 11150 | 0.0 | - |
0.9900 | 11200 | 0.0 | - |
0.9944 | 11250 | 0.0 | - |
0.9989 | 11300 | 0.0 | - |
Framework Versions
- Python: 3.10.14
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.40.1
- PyTorch: 2.2.0+cu121
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.