Llama-3.1_OpenScholar-8B with AWQ Quantization

This is Llama-3.1_OpenScholar-8B with AWQ Quantization applied using the following code.

Based on this example code.

import torch

from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer

# Input and output path
path = "OpenScholar/Llama-3.1_OpenScholar-8B"
output = "Llama-3.1_OpenScholar-8B-AWQ"

# Quantization config
config = {
    "zero_point": True,
    "q_group_size": 128,
    "w_bit": 4,
    "version": "GEMM"
}

# Load model
model = AutoAWQForCausalLM.from_pretrained(
    model_path=path,
    low_cpu_mem_usage=True,
    use_cache=False,
    safetensors=False,
    device_map="cuda",
    torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(path)

# Quantize
model.quantize(tokenizer, quant_config=config)

# Save quantized model
model.save_quantized(output)

# Save tokenizer
# Note: Transformers >= 4.45.0 doubles size of tokenizer.json
# See https://github.com/huggingface/transformers/issues/34744
tokenizer.save_pretrained(output)

print(f'Model is quantized and saved to "{output}"')
Downloads last month
1,233
Safetensors
Model size
1.98B params
Tensor type
I32
·
BF16
·
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for NeuML/Llama-3.1_OpenScholar-8B-AWQ

Quantized
(2)
this model

Collection including NeuML/Llama-3.1_OpenScholar-8B-AWQ