madness-nemo-12b / README.md
Delta-Vector's picture
Upload folder using huggingface_hub
6abe9df verified
metadata
base_model:
  - NewEden/nemo-erebus
  - nbeerbower/mistral-nemo-gutenberg-12B-v4
  - grimjim/mistralai-Mistral-Nemo-Instruct-2407
  - nbeerbower/mistral-nemo-bophades-12B
  - TheDrummer/UnslopNemo-12B-v4.1
library_name: transformers
tags:
  - mergekit
  - merge

merge

This is a merge of pre-trained language models created using mergekit.

Merge Details

Merge Method

This model was merged using the task arithmetic merge method using NewEden/nemo-erebus as a base.

Models Merged

The following models were included in the merge:

Configuration

The following YAML configuration was used to produce this model:

models:
  - model: grimjim/mistralai-Mistral-Nemo-Instruct-2407
    parameters: 
      density: 0.2
      weight: 0.23
  - model: nbeerbower/mistral-nemo-bophades-12B
    parameters: 
      density: 0.2
      weight: 0.43
  - model: nbeerbower/mistral-nemo-gutenberg-12B-v4
    parameters:
      density: 0.2
      weight: 0.43
  - model: TheDrummer/UnslopNemo-12B-v4.1
    parameters:
      density: 0.5
      weight: 0.63

merge_method: task_arithmetic
base_model: NewEden/nemo-erebus
parameters:
  normalize: false
  int8_mask: true
dtype: bfloat16

layer_parameters:
  - range: [0, 10]
    density_multiplier: 1.2
  - range: [10, 20]
    density_multiplier: 1.0
  - range: [20, 30]
    density_multiplier: 0.8
  - range: [30, 40]
    density_multiplier: 0.6

regularization:
  - method: gradient_penalty
    scale: 0.05
  - method: weight_clipping
    clip_range: [-0.2, 0.2]
  - method: random_noise
    scale: 0.01
  - method: attention_dropout
    scale: 0.1

postprocessing:
  - operation: entropy_regularization
    scale: 0.05
  - operation: non_linear_scaling
    parameters:
      function: tanh
  - operation: sharpening
    intensity: 0.5
  - operation: gaussian_smoothing
    sigma: 1.5
  - operation: normalize
  - operation: dynamic_scaling
    scale_range: [0.8, 1.2]
  - operation: smoothing
    parameters:
      adaptive: true
      range: [0.85, 1.15]
      kernel_size: 5