See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/gemma-1.1-2b-it
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- f096236a56eb4f1e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f096236a56eb4f1e_train_data.json
type:
field_input: context
field_instruction: question
field_output: answers
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Nexspear/0e505f6d-b3fc-4c1a-8f1a-70b4ded49b3e
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 72GB
max_steps: 50
micro_batch_size: 8
mlflow_experiment_name: /tmp/f096236a56eb4f1e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 0e505f6d-b3fc-4c1a-8f1a-70b4ded49b3e
wandb_project: Gradients-On-Four
wandb_run: your_name
wandb_runid: 0e505f6d-b3fc-4c1a-8f1a-70b4ded49b3e
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
0e505f6d-b3fc-4c1a-8f1a-70b4ded49b3e
This model is a fine-tuned version of unsloth/gemma-1.1-2b-it on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5867
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0003 | 1 | 5.8795 |
5.2239 | 0.0017 | 5 | 1.8666 |
1.0414 | 0.0034 | 10 | 0.7526 |
0.688 | 0.0052 | 15 | 0.6775 |
0.6198 | 0.0069 | 20 | 0.6454 |
0.6841 | 0.0086 | 25 | 0.6238 |
0.6312 | 0.0103 | 30 | 0.6086 |
0.615 | 0.0120 | 35 | 0.5967 |
0.6002 | 0.0138 | 40 | 0.5893 |
0.5752 | 0.0155 | 45 | 0.5873 |
0.5964 | 0.0172 | 50 | 0.5867 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 47
Model tree for Nexspear/0e505f6d-b3fc-4c1a-8f1a-70b4ded49b3e
Base model
unsloth/gemma-1.1-2b-it