See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: 01-ai/Yi-1.5-9B-Chat-16K
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 947c64f37ed9e86e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/947c64f37ed9e86e_train_data.json
type:
field_instruction: database
field_output: text
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: Nexspear/7bcfda04-4e4a-46f8-b569-7d8df9bb411a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/947c64f37ed9e86e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: f924ee2e-758d-4f5f-a996-6f3814a6b608
wandb_project: Gradients-On-Four
wandb_run: your_name
wandb_runid: f924ee2e-758d-4f5f-a996-6f3814a6b608
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
7bcfda04-4e4a-46f8-b569-7d8df9bb411a
This model is a fine-tuned version of 01-ai/Yi-1.5-9B-Chat-16K on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4326
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0003 | 1 | 2.0888 |
2.0067 | 0.0028 | 9 | 2.0029 |
1.807 | 0.0056 | 18 | 1.8005 |
1.6389 | 0.0085 | 27 | 1.6532 |
1.5628 | 0.0113 | 36 | 1.5695 |
1.5623 | 0.0141 | 45 | 1.5185 |
1.4848 | 0.0169 | 54 | 1.4850 |
1.4526 | 0.0198 | 63 | 1.4604 |
1.5184 | 0.0226 | 72 | 1.4454 |
1.4415 | 0.0254 | 81 | 1.4370 |
1.3907 | 0.0282 | 90 | 1.4334 |
1.3896 | 0.0311 | 99 | 1.4326 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for Nexspear/7bcfda04-4e4a-46f8-b569-7d8df9bb411a
Base model
01-ai/Yi-1.5-9B-Chat-16K