See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Korabbit/llama-2-ko-7b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- b8d59913e7e61f4c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/b8d59913e7e61f4c_train_data.json
type:
field_input: company
field_instruction: info_type
field_output: text
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Nexspear/c7ad37b1-e5c1-4c70-b5de-ad2745e33277
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 72GB
max_steps: 50
micro_batch_size: 8
mlflow_experiment_name: /tmp/b8d59913e7e61f4c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: c7ad37b1-e5c1-4c70-b5de-ad2745e33277
wandb_project: Gradients-On-Four
wandb_run: your_name
wandb_runid: c7ad37b1-e5c1-4c70-b5de-ad2745e33277
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
c7ad37b1-e5c1-4c70-b5de-ad2745e33277
This model is a fine-tuned version of Korabbit/llama-2-ko-7b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5486
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0025 | 1 | 2.3433 |
2.3531 | 0.0125 | 5 | 2.1037 |
1.9238 | 0.0251 | 10 | 1.7872 |
1.7352 | 0.0376 | 15 | 1.6542 |
1.663 | 0.0502 | 20 | 1.6090 |
1.6029 | 0.0627 | 25 | 1.5838 |
1.5772 | 0.0752 | 30 | 1.5675 |
1.5755 | 0.0878 | 35 | 1.5578 |
1.5416 | 0.1003 | 40 | 1.5517 |
1.5355 | 0.1129 | 45 | 1.5493 |
1.5412 | 0.1254 | 50 | 1.5486 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 4
Model tree for Nexspear/c7ad37b1-e5c1-4c70-b5de-ad2745e33277
Base model
Korabbit/llama-2-ko-7b