Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.6
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - f01fed07670c5379_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/f01fed07670c5379_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: Nexspear/e1729cec-1158-465c-80af-cf1fcb732574
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 8
mlflow_experiment_name: /tmp/f01fed07670c5379_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 10ca5ef2-ff17-476a-92a2-d039d8d05243
wandb_project: Gradients-On-Four
wandb_run: your_name
wandb_runid: 10ca5ef2-ff17-476a-92a2-d039d8d05243
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

e1729cec-1158-465c-80af-cf1fcb732574

This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-Chat-v0.6 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0889

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss
No log 0.0001 1 1.1609
1.0855 0.0063 42 1.1297
1.0373 0.0126 84 1.1157
1.177 0.0189 126 1.1069
1.1124 0.0252 168 1.1012
1.0302 0.0315 210 1.0972
1.1041 0.0378 252 1.0943
1.0171 0.0440 294 1.0924
1.0916 0.0503 336 1.0907
1.0477 0.0566 378 1.0897
1.1333 0.0629 420 1.0891
1.1253 0.0692 462 1.0889

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Nexspear/e1729cec-1158-465c-80af-cf1fcb732574

Adapter
(104)
this model