metadata
tags:
- merge
- mergekit
- lazymergekit
- hiieu/Meta-Llama-3-8B-Instruct-function-calling-json-mode
- Orenguteng/Lexi-Llama-3-8B-Uncensored
- NousResearch/Meta-Llama-3-8B
- NousResearch/Meta-Llama-3-8B-Instruct
base_model:
- hiieu/Meta-Llama-3-8B-Instruct-function-calling-json-mode
- Orenguteng/Lexi-Llama-3-8B-Uncensored
- NousResearch/Meta-Llama-3-8B
- NousResearch/Meta-Llama-3-8B-Instruct
Meta-Llama-3-8b-Lexi-Uninstruct-function-calling-json-mode-Task-Arithmetic-v0.2A
Meta-Llama-3-8b-Lexi-Uninstruct-function-calling-json-mode-Task-Arithmetic-v0.2A is a merge of the following models using LazyMergekit:
- hiieu/Meta-Llama-3-8B-Instruct-function-calling-json-mode
- Orenguteng/Lexi-Llama-3-8B-Uncensored
- NousResearch/Meta-Llama-3-8B
- NousResearch/Meta-Llama-3-8B-Instruct
🧩 Configuration
slices:
- sources:
- model: hiieu/Meta-Llama-3-8B-Instruct-function-calling-json-mode
parameters:
weight: 1
layer_range: [0, 40]
- model: Orenguteng/Lexi-Llama-3-8B-Uncensored
parameters:
weight: 1
layer_range: [0, 40]
- model: NousResearch/Meta-Llama-3-8B
parameters:
weight: 0.3
layer_range: [0, 40]
- model: NousResearch/Meta-Llama-3-8B-Instruct
parameters:
weight: 0.7
layer_range: [0, 40]
merge_method: task_arithmetic
base_model: NousResearch/Meta-Llama-3-8B-Instruct
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Nhoodie/Meta-Llama-3-8b-Lexi-Uninstruct-function-calling-json-mode-Task-Arithmetic-v0.2A"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])