Edit model card
YAML Metadata Error: "datasets[1]" must be a string
YAML Metadata Error: "datasets[2]" must be a string

Wav2Vec2-Large-XLSR-53-Vietnamese

Fine-tuned facebook/wav2vec2-large-xlsr-53 on Vietnamese using the Common Voice, FOSD and VIVOS. When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
ENCODER = {
    "ia ": "iê ",
    "ìa ": "iề ",
    "ía ": "iế ",
    "ỉa ": "iể ",
    "ĩa ": "iễ ",
    "ịa ": "iệ ",
    "ya ": "yê ",
    "ỳa ": "yề ",
    "ýa ": "yế ",
    "ỷa ": "yể ",
    "ỹa ": "yễ ",
    "ỵa ": "yệ ",
    "ua ": "uô ",
    "ùa ": "uồ ",
    "úa ": "uố ",
    "ủa ": "uổ ",
    "ũa ": "uỗ ",
    "ụa ": "uộ ",
    "ưa ": "ươ ",
    "ừa ": "ườ ",
    "ứa ": "ướ ",
    "ửa ": "ưở ",
    "ữa ": "ưỡ ",
    "ựa ": "ượ ",
    "ke": "ce",
    "kè": "cè",
    "ké": "cé",
    "kẻ": "cẻ",
    "kẽ": "cẽ",
    "kẹ": "cẹ",
    "kê": "cê",
    "kề": "cề",
    "kế": "cế",
    "kể": "cể",
    "kễ": "cễ",
    "kệ": "cệ",
    "ki": "ci",
    "kì": "cì",
    "kí": "cí",
    "kỉ": "cỉ",
    "kĩ": "cĩ",
    "kị": "cị",
    "ky": "cy",
    "kỳ": "cỳ",
    "ký": "cý",
    "kỷ": "cỷ",
    "kỹ": "cỹ",
    "kỵ": "cỵ",
    "ghe": "ge",
    "ghè": "gè",
    "ghé": "gé",
    "ghẻ": "gẻ",
    "ghẽ": "gẽ",
    "ghẹ": "gẹ",
    "ghê": "gê",
    "ghề": "gề",
    "ghế": "gế",
    "ghể": "gể",
    "ghễ": "gễ",
    "ghệ": "gệ",
    "ngh": "\x80",
    "uyê": "\x96",
    "uyề": "\x97",
    "uyế": "\x98",
    "uyể": "\x99",
    "uyễ": "\x9a",
    "uyệ": "\x9b",
    "ng": "\x81",
    "ch": "\x82",
    "gh": "\x83",
    "nh": "\x84",
    "gi": "\x85",
    "ph": "\x86",
    "kh": "\x87",
    "th": "\x88",
    "tr": "\x89",
    "uy": "\x8a",
    "uỳ": "\x8b",
    "uý": "\x8c",
    "uỷ": "\x8d",
    "uỹ": "\x8e",
    "uỵ": "\x8f",
    "iê": "\x90",
    "iề": "\x91",
    "iế": "\x92",
    "iể": "\x93",
    "iễ": "\x94",
    "iệ": "\x95",
    "uô": "\x9c",
    "uồ": "\x9d",
    "uố": "\x9e",
    "uổ": "\x9f",
    "uỗ": "\xa0",
    "uộ": "\xa1",
    "ươ": "\xa2",
    "ườ": "\xa3",
    "ướ": "\xa4",
    "ưở": "\xa5",
    "ưỡ": "\xa6",
    "ượ": "\xa7",
}
  
def decode_string(x):
  for k, v in list(reversed(list(ENCODER.items()))):
    x = x.replace(v, k)
  return x
test_dataset = load_dataset("common_voice", "vi", split="test[:2%]") 
processor = Wav2Vec2Processor.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese")
model = Wav2Vec2ForCTC.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
  speech_array, sampling_rate = torchaudio.load(batch["path"])
  batch["speech"] = resampler(speech_array).squeeze().numpy()
  return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
  logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", [decode_string(x) for x in processor.batch_decode(predicted_ids)])
print("Reference:", test_dataset["sentence"][:2])

Evaluation

The model can be evaluated as follows on the Vietnamese test data of Common Voice.

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

ENCODER = {
    "ia ": "iê ",
    "ìa ": "iề ",
    "ía ": "iế ",
    "ỉa ": "iể ",
    "ĩa ": "iễ ",
    "ịa ": "iệ ",
    "ya ": "yê ",
    "ỳa ": "yề ",
    "ýa ": "yế ",
    "ỷa ": "yể ",
    "ỹa ": "yễ ",
    "ỵa ": "yệ ",
    "ua ": "uô ",
    "ùa ": "uồ ",
    "úa ": "uố ",
    "ủa ": "uổ ",
    "ũa ": "uỗ ",
    "ụa ": "uộ ",
    "ưa ": "ươ ",
    "ừa ": "ườ ",
    "ứa ": "ướ ",
    "ửa ": "ưở ",
    "ữa ": "ưỡ ",
    "ựa ": "ượ ",
    "ke": "ce",
    "kè": "cè",
    "ké": "cé",
    "kẻ": "cẻ",
    "kẽ": "cẽ",
    "kẹ": "cẹ",
    "kê": "cê",
    "kề": "cề",
    "kế": "cế",
    "kể": "cể",
    "kễ": "cễ",
    "kệ": "cệ",
    "ki": "ci",
    "kì": "cì",
    "kí": "cí",
    "kỉ": "cỉ",
    "kĩ": "cĩ",
    "kị": "cị",
    "ky": "cy",
    "kỳ": "cỳ",
    "ký": "cý",
    "kỷ": "cỷ",
    "kỹ": "cỹ",
    "kỵ": "cỵ",
    "ghe": "ge",
    "ghè": "gè",
    "ghé": "gé",
    "ghẻ": "gẻ",
    "ghẽ": "gẽ",
    "ghẹ": "gẹ",
    "ghê": "gê",
    "ghề": "gề",
    "ghế": "gế",
    "ghể": "gể",
    "ghễ": "gễ",
    "ghệ": "gệ",
    "ngh": "\x80",
    "uyê": "\x96",
    "uyề": "\x97",
    "uyế": "\x98",
    "uyể": "\x99",
    "uyễ": "\x9a",
    "uyệ": "\x9b",
    "ng": "\x81",
    "ch": "\x82",
    "gh": "\x83",
    "nh": "\x84",
    "gi": "\x85",
    "ph": "\x86",
    "kh": "\x87",
    "th": "\x88",
    "tr": "\x89",
    "uy": "\x8a",
    "uỳ": "\x8b",
    "uý": "\x8c",
    "uỷ": "\x8d",
    "uỹ": "\x8e",
    "uỵ": "\x8f",
    "iê": "\x90",
    "iề": "\x91",
    "iế": "\x92",
    "iể": "\x93",
    "iễ": "\x94",
    "iệ": "\x95",
    "uô": "\x9c",
    "uồ": "\x9d",
    "uố": "\x9e",
    "uổ": "\x9f",
    "uỗ": "\xa0",
    "uộ": "\xa1",
    "ươ": "\xa2",
    "ườ": "\xa3",
    "ướ": "\xa4",
    "ưở": "\xa5",
    "ưỡ": "\xa6",
    "ượ": "\xa7",
}

def decode_string(x):
  for k, v in list(reversed(list(ENCODER.items()))):
    x = x.replace(v, k)
  return x

test_dataset = load_dataset("common_voice", "vi", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese")
model = Wav2Vec2ForCTC.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese")
model.to("cuda")

chars_to_ignore_regex = '[\\\+\@\ǀ\,\?\.\!\-\;\:\"\“\%\‘\”\�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
  batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
  speech_array, sampling_rate = torchaudio.load(batch["path"])
  batch["speech"] = resampler(speech_array).squeeze().numpy()
  return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
  inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
  with torch.no_grad():
    logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
  pred_ids = torch.argmax(logits, dim=-1)
  batch["pred_strings"] = processor.batch_decode(pred_ids)
  # decode_string: We replace the encoded letter with the initial letters
  batch["pred_strings"] = [decode_string(x) for x in batch["pred_strings"]]
  return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result: 49.59 %

Training

The Common Voice train, validation and FOSD datasets and VIVOS datasets were used for training as well. The script used for training can be found here

Downloads last month
152
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results