zephyr-7b-uf-rlced-conifer-group-dpo-2e-alr-0.01-1e
This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the data/zephyr_uf_rlced_conifer_ref dataset. It achieves the following results on the evaluation set:
- Loss: 0.2572
- Rewards/chosen: -2.2030
- Rewards/rejected: -5.8511
- Rewards/accuracies: 0.8675
- Rewards/margins: 3.6481
- Logps/rejected: -988.8447
- Logps/chosen: -612.7692
- Logits/rejected: 2.2087
- Logits/chosen: 0.2455
- Excess Loss: 0.0532
- Alpha 0 Uf: 0.6287
- Alpha 1 Rlced Conifer: 0.3713
- Rewards/chosen 1 Rlced Conifer: -2.2869
- Rewards/rejected 1 Rlced Conifer: -6.6795
- Rewards/accuracies 1 Rlced Conifer: 0.9030
- Rewards/margins 1 Rlced Conifer: 4.3926
- Logps/rejected 1 Rlced Conifer: -1115.4857
- Logps/chosen 1 Rlced Conifer: -652.2682
- Logits/rejected 1 Rlced Conifer: 2.0086
- Logits/chosen 1 Rlced Conifer: -0.0625
- Task Loss 1 Rlced Conifer: 0.1962
- Task Excess Loss 1 Rlced Conifer: 0.0645
- Rewards/chosen 0 Uf: -1.8688
- Rewards/rejected 0 Uf: -2.8942
- Rewards/accuracies 0 Uf: 0.7397
- Rewards/margins 0 Uf: 1.0254
- Logps/rejected 0 Uf: -531.0295
- Logps/chosen 0 Uf: -476.1427
- Logits/rejected 0 Uf: 3.1191
- Logits/chosen 0 Uf: 1.2438
- Task Loss 0 Uf: 0.5240
- Task Excess Loss 0 Uf: 0.0664
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Excess Loss | Alpha 0 Uf | Alpha 1 Rlced Conifer | Rewards/chosen 1 Rlced Conifer | Rewards/rejected 1 Rlced Conifer | Rewards/accuracies 1 Rlced Conifer | Rewards/margins 1 Rlced Conifer | Logps/rejected 1 Rlced Conifer | Logps/chosen 1 Rlced Conifer | Logits/rejected 1 Rlced Conifer | Logits/chosen 1 Rlced Conifer | Task Loss 1 Rlced Conifer | Task Excess Loss 1 Rlced Conifer | Rewards/chosen 0 Uf | Rewards/rejected 0 Uf | Rewards/accuracies 0 Uf | Rewards/margins 0 Uf | Logps/rejected 0 Uf | Logps/chosen 0 Uf | Logits/rejected 0 Uf | Logits/chosen 0 Uf | Task Loss 0 Uf | Task Excess Loss 0 Uf |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1859 | 0.2498 | 180 | 0.2923 | -1.9944 | -4.7058 | 0.8524 | 2.7115 | -874.3204 | -591.9084 | 0.9002 | -0.1249 | 0.0816 | 0.4921 | 0.5079 | -2.0854 | -5.3481 | 0.8866 | 3.2627 | -982.3445 | -632.1208 | 0.7201 | -0.3404 | 0.2278 | 0.0919 | -1.6415 | -2.4124 | 0.7158 | 0.7709 | -482.8499 | -453.4123 | 1.6757 | 0.5476 | 0.5480 | 0.1058 |
0.1646 | 0.4997 | 360 | 0.2654 | -2.3703 | -5.8263 | 0.8637 | 3.4560 | -986.3652 | -629.4960 | 1.5662 | -0.2281 | 0.0630 | 0.5888 | 0.4112 | -2.4491 | -6.6305 | 0.8988 | 4.1814 | -1110.5859 | -668.4894 | 1.4570 | -0.4928 | 0.2047 | 0.0719 | -2.0521 | -2.9610 | 0.7379 | 0.9089 | -537.7054 | -494.4703 | 2.1435 | 0.6282 | 0.5444 | 0.0878 |
0.162 | 0.7495 | 540 | 0.2603 | -2.0719 | -5.7198 | 0.8637 | 3.6479 | -975.7140 | -599.6583 | 1.8052 | -0.3472 | 0.0563 | 0.6201 | 0.3799 | -2.1783 | -6.5775 | 0.9020 | 4.3992 | -1105.2861 | -641.4061 | 1.6728 | -0.6324 | 0.1991 | 0.0667 | -1.6637 | -2.6673 | 0.7294 | 1.0036 | -508.3393 | -455.6315 | 2.4641 | 0.5657 | 0.5322 | 0.0717 |
0.1476 | 0.9993 | 720 | 0.2572 | -2.2030 | -5.8511 | 0.8675 | 3.6481 | -988.8447 | -612.7692 | 2.2087 | 0.2455 | 0.0532 | 0.6287 | 0.3713 | -2.2869 | -6.6795 | 0.9030 | 4.3926 | -1115.4857 | -652.2682 | 2.0086 | -0.0625 | 0.1962 | 0.0645 | -1.8688 | -2.8942 | 0.7397 | 1.0254 | -531.0295 | -476.1427 | 3.1191 | 1.2438 | 0.5240 | 0.0664 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.2.0a0+81ea7a4
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for NicholasCorrado/zephyr-7b-uf-rlced-conifer-group-dpo-2e-alr-0.01-1e
Base model
mistralai/Mistral-7B-v0.1
Finetuned
alignment-handbook/zephyr-7b-sft-full