|
--- |
|
language: |
|
- en |
|
- es |
|
- ru |
|
- zh |
|
- de |
|
- fr |
|
- th |
|
- ca |
|
- it |
|
- ja |
|
- pl |
|
- eo |
|
- eu |
|
- vi |
|
- fi |
|
- hu |
|
- ar |
|
- nl |
|
- da |
|
- tr |
|
- ko |
|
- he |
|
- id |
|
- cs |
|
- bn |
|
- sv |
|
base_model: |
|
- NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_1_V1 |
|
- NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_3_V1 |
|
- NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_2_V1 |
|
tags: |
|
- mergekit |
|
- merge |
|
widget: |
|
- text: "<|im_start|>system\nYou are a helpful AI assistant.<|im_end|>\n<|im_start|>user\npodrias escribir un codigo de ejemplo en Python<|im_end|>\n<|im_start|>assistant\n" |
|
license: apache-2.0 |
|
--- |
|
# merged |
|
|
|
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). |
|
|
|
## Merge Details |
|
### Merge Method |
|
|
|
This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_1_V1](https://huggingface.co/NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_1_V1) as a base. |
|
|
|
### Models Merged |
|
|
|
The following models were included in the merge: |
|
* [NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_3_V1](https://huggingface.co/NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_3_V1) |
|
* [NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_2_V1](https://huggingface.co/NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_2_V1) |
|
|
|
### Configuration |
|
|
|
The following YAML configuration was used to produce this model: |
|
|
|
```yaml |
|
base_model: |
|
model: |
|
path: NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_1_V1 |
|
dtype: bfloat16 |
|
merge_method: dare_ties |
|
slices: |
|
- sources: |
|
- layer_range: [0, 22] |
|
model: |
|
model: |
|
path: NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_1_V1 |
|
- layer_range: [0, 22] |
|
model: |
|
model: |
|
path: NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_1_V1 |
|
parameters: |
|
density: 0.55 |
|
weight: 0.55 |
|
- layer_range: [0, 22] |
|
model: |
|
model: |
|
path: NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_2_V1 |
|
parameters: |
|
density: 0.55 |
|
weight: 0.56 |
|
- layer_range: [0, 22] |
|
model: |
|
model: |
|
path: NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_3_V1 |
|
parameters: |
|
density: 0.55 |
|
weight: 0.56 |
|
``` |
|
|
|
|
|
|
|
```Python |
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
BitsAndBytesConfig, |
|
HfArgumentParser, |
|
TrainingArguments, |
|
pipeline, |
|
logging, |
|
GenerationConfig, |
|
TextIteratorStreamer, |
|
) |
|
import torch |
|
|
|
new_model= "NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_all_Cluster_merge_v1" |
|
model = AutoModelForCausalLM.from_pretrained(#f'NickyNicky/{new_model}', |
|
new_model, |
|
device_map="auto", |
|
trust_remote_code=True, |
|
torch_dtype=torch.bfloat16, |
|
|
|
low_cpu_mem_usage= True, |
|
# use_flash_attention_2=False, |
|
|
|
) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(new_model, |
|
max_length=2048, |
|
trust_remote_code=True, |
|
use_fast = True, |
|
) |
|
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
# tokenizer.padding_side = 'left' |
|
tokenizer.padding_side = 'right' |
|
|
|
|
|
prompt= """<|im_start|>system |
|
You are a helpful AI assistant.<|im_end|> |
|
<|im_start|>user |
|
escribe una historia de amor.<|im_end|> |
|
<|im_start|>assistant |
|
""" |
|
|
|
inputs = tokenizer.encode(prompt, |
|
return_tensors="pt", |
|
add_special_tokens=False).cuda()#.to("cuda") # False # True |
|
|
|
|
|
generation_config = GenerationConfig( |
|
max_new_tokens=700, |
|
temperature=0.5, |
|
top_p=0.9, |
|
top_k=40, |
|
repetition_penalty=1.1, #1.1, # 1.0 means no penalty, > 1.0 means penalty, 1.2 from CTRL paper |
|
do_sample=True, |
|
pad_token_id=tokenizer.eos_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
) |
|
outputs = model.generate( |
|
generation_config=generation_config, |
|
input_ids=inputs,) |
|
# tokenizer.decode(outputs[0], skip_special_tokens=False) #True |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=False)) |
|
``` |