distilhubert-finetuned-breathiness
This model is a fine-tuned version of ntu-spml/distilhubert on the PQVD dataset. It achieves the following results on the evaluation set:
- Loss: 1.2978
- Accuracy: 0.8163
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6428 | 1.0 | 74 | 0.6271 | 0.7279 |
0.5684 | 2.0 | 148 | 0.4996 | 0.7891 |
0.4783 | 3.0 | 222 | 0.4684 | 0.7823 |
0.2441 | 4.0 | 296 | 0.4405 | 0.8027 |
0.6583 | 5.0 | 370 | 0.4966 | 0.7891 |
0.3304 | 6.0 | 444 | 0.5008 | 0.8231 |
0.4209 | 7.0 | 518 | 0.5070 | 0.8435 |
0.2269 | 8.0 | 592 | 0.6253 | 0.8027 |
0.2272 | 9.0 | 666 | 0.9433 | 0.7755 |
0.0023 | 10.0 | 740 | 0.8471 | 0.8231 |
0.0776 | 11.0 | 814 | 1.0535 | 0.7891 |
0.0007 | 12.0 | 888 | 1.0649 | 0.8299 |
0.0004 | 13.0 | 962 | 1.0674 | 0.8231 |
0.0004 | 14.0 | 1036 | 1.1414 | 0.8231 |
0.0003 | 15.0 | 1110 | 1.3342 | 0.8095 |
0.0003 | 16.0 | 1184 | 1.2617 | 0.8163 |
0.0003 | 17.0 | 1258 | 1.2684 | 0.8231 |
0.0002 | 18.0 | 1332 | 1.2787 | 0.8231 |
0.0002 | 19.0 | 1406 | 1.2923 | 0.8163 |
0.0002 | 20.0 | 1480 | 1.2978 | 0.8163 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 86
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for NiloofarMomeni/distilhubert-finetuned-PQVD
Base model
ntu-spml/distilhubert