See axolotl config
axolotl version: 0.4.1
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: mhenrichsen/alpaca_2k_test
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
outputs/lora-out
This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2122
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.4615 | 0.08 | 1 | 1.4899 |
1.3849 | 0.24 | 3 | 1.4852 |
1.3665 | 0.48 | 6 | 1.4411 |
1.2689 | 0.72 | 9 | 1.3381 |
1.2258 | 0.96 | 12 | 1.2960 |
1.2518 | 1.16 | 15 | 1.2797 |
1.2263 | 1.4 | 18 | 1.2534 |
1.1343 | 1.6400 | 21 | 1.2354 |
1.2699 | 1.88 | 24 | 1.2255 |
1.1493 | 2.08 | 27 | 1.2228 |
1.153 | 2.32 | 30 | 1.2188 |
1.1947 | 2.56 | 33 | 1.2183 |
1.1125 | 2.8 | 36 | 1.2157 |
1.1512 | 3.04 | 39 | 1.2123 |
1.1883 | 3.24 | 42 | 1.2100 |
1.1012 | 3.48 | 45 | 1.2119 |
1.1891 | 3.7200 | 48 | 1.2122 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 10