Norod78's picture
Update README.md
ced5e66
|
raw
history blame
2.85 kB
metadata
tags:
  - generated_from_trainer
model-index:
  - name: TinyStories-3M-val-Hebrew
    results: []
license: mit
language:
  - he
datasets:
  - Norod78/TinyStoriesV2-GPT4-valid_heb-lineByLine-EoT
widget:
  - text: היה פעם
  - text: פעם אחת
  - text: החתול שלך מאוד חמוד ו
pipeline_tag: text-generation

TinyStories-3M-val-Hebrew

This model is trained upon Norod78/TinyStoriesV2-GPT4-valid_heb-lineByLine-EoT

Dataset is a machine translation of TinyStoriesV2-GPT4-valid.txt by roneneldan

Trasnlation was done using this script

Original Dataset containing synthetically generated (by GPT-3.5 and GPT-4) short stories that only use a small vocabulary.

Model description

A very very small model (8M params) tarined on a very small dataset

A sample inference script is available

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 24
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 300.0

Framework versions

  • Transformers 4.31.0.dev0

  • Pytorch 2.0.0

  • Datasets 2.13.1

  • Tokenizers 0.13.3

  • Parameter calculation

  def gpt_params(seq_len, vocab_size, d_model, num_heads, num_layers):
    """ Given GPT config calculate total number of parameters """
    ffw_size = 4*d_model # in GPT the number of intermediate features is always 4*d_model
    # token and position embeddings
    embeddings = d_model * vocab_size + d_model * seq_len
    # transformer blocks
    attention = 3*d_model**2 + 3*d_model # weights and biases
    attproj = d_model**2 + d_model
    ffw = d_model*(ffw_size) + ffw_size
    ffwproj = ffw_size*d_model + d_model
    layernorms = 2*2*d_model
    # dense
    ln_f = 2*d_model
    dense = d_model*vocab_size # note: no bias here
    # note: embeddings are not included in the param count!
    total_params = num_layers*(attention + attproj + ffw + ffwproj + layernorms) + ln_f + dense
    return total_params

#gpt2 = dict(seq_len = 1024, vocab_size = 50257, d_model = 768, num_heads = 12, num_layers = 12)
gpt2 = dict(seq_len = 256, vocab_size = 50259, d_model = 128, num_heads = 16, num_layers = 8)
result = gpt_params(**gpt2)/1e6
print(result) #Prints 8.019584