|
--- |
|
license: apache-2.0 |
|
library_name: transformers |
|
base_model: OpenGVLab/InternVL2-4B |
|
pipeline_tag: image-text-to-text |
|
--- |
|
|
|
# OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis |
|
|
|
<div align="center"> |
|
|
|
[\[🏠Homepage\]](https://qiushisun.github.io/OS-Genesis-Home/) [\[💻Code\]](https://github.com/OS-Copilot/OS-Genesis) [\[📝Paper\]](https://arxiv.org/abs/2412.19723) [\[🤗Models\]](https://huggingface.co/collections/OS-Copilot/os-genesis-6768d4b6fffc431dbf624c2d)[\[🤗Data\]](https://huggingface.co/collections/OS-Copilot/os-genesis-6768d4b6fffc431dbf624c2d) |
|
|
|
</div> |
|
|
|
## Overview |
|
![os-genesis](https://cdn-uploads.huggingface.co/production/uploads/6064a0eeb1703ddba0d458b9/XvcAh92uvJQglmIu_L_nK.png) |
|
|
|
We introduce OS-Genesis, an interaction-driven pipeline that synthesizes high-quality and diverse GUI agent trajectory data without human supervision. By leveraging reverse task synthesis, OS-Genesis enables effective training of GUI agents to achieve superior performance on dynamic benchmarks such as AndroidWorld and WebArena. |
|
|
|
## Quick Start |
|
OS-Genesis-4B-AC is a mobile action model finetuned from [InternVL2-4B](https://huggingface.co/OpenGVLab/InternVL2-4B). |
|
|
|
### OS-Genesis AC Family Models |
|
In the following table, we provide an overview of the OS-Genesis AC Family Models used for evaluating the AndroidControl Benchmark. |
|
|
|
| Model Name | Base Model | Training Data | HF Link | |
|
| :-------------: | :-------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------: | :---------------------------------------------------------: | |
|
| OS-Genesis-4B-AC | [InternVL2-4B](https://huggingface.co/OpenGVLab/InternVL2-4B) | [OS-Genesis-ac-training-data](https://huggingface.co/datasets/OS-Copilot/OS-Genesis-mobile-data/blob/main/os_genesis_ac_training_data.jsonl) | [🤗 link](https://huggingface.co/OS-Copilot/OS-Genesis-4B-AC) | |
|
| OS-Genesis-7B-AC | [Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) | [OS-Genesis-ac-training-data](https://huggingface.co/datasets/OS-Copilot/OS-Genesis-mobile-data/blob/main/os_genesis_ac_training_data.jsonl) | [🤗 link](https://huggingface.co/OS-Copilot/OS-Genesis-7B-AC) | |
|
| OS-Genesis-8B-AC | [InternVL2-8B](https://huggingface.co/OpenGVLab/InternVL2-8B) | [OS-Genesis-ac-training-data](https://huggingface.co/datasets/OS-Copilot/OS-Genesis-mobile-data/blob/main/os_genesis_ac_training_data.jsonl) | [🤗 link](https://huggingface.co/OS-Copilot/OS-Genesis-8B-AC) | |
|
|
|
|
|
### Inference Example |
|
First, install the `transformers` library: |
|
|
|
``` |
|
pip install transformers |
|
``` |
|
|
|
For additional dependencies, please refer to the [InternVL2 documentation](https://internvl.readthedocs.io/en/latest/get_started/installation.html). |
|
|
|
For evaluating the AndroidControl Benchmark, please refer to the [**evaluation code**](https://github.com/OS-Copilot/OS-Genesis/tree/main/evaluation/android_control). |
|
|
|
Inference code example: |
|
```python |
|
import numpy as np |
|
import torch |
|
import torchvision.transforms as T |
|
from PIL import Image |
|
from torchvision.transforms.functional import InterpolationMode |
|
from transformers import AutoModel, AutoTokenizer |
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
|
|
def build_transform(input_size): |
|
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD |
|
transform = T.Compose([ |
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), |
|
T.ToTensor(), |
|
T.Normalize(mean=MEAN, std=STD) |
|
]) |
|
return transform |
|
|
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): |
|
best_ratio_diff = float('inf') |
|
best_ratio = (1, 1) |
|
area = width * height |
|
for ratio in target_ratios: |
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
if ratio_diff < best_ratio_diff: |
|
best_ratio_diff = ratio_diff |
|
best_ratio = ratio |
|
elif ratio_diff == best_ratio_diff: |
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
best_ratio = ratio |
|
return best_ratio |
|
|
|
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): |
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
|
|
# calculate the existing image aspect ratio |
|
target_ratios = set( |
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if |
|
i * j <= max_num and i * j >= min_num) |
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
# find the closest aspect ratio to the target |
|
target_aspect_ratio = find_closest_aspect_ratio( |
|
aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
# calculate the target width and height |
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
# resize the image |
|
resized_img = image.resize((target_width, target_height)) |
|
processed_images = [] |
|
for i in range(blocks): |
|
box = ( |
|
(i % (target_width // image_size)) * image_size, |
|
(i // (target_width // image_size)) * image_size, |
|
((i % (target_width // image_size)) + 1) * image_size, |
|
((i // (target_width // image_size)) + 1) * image_size |
|
) |
|
# split the image |
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
assert len(processed_images) == blocks |
|
if use_thumbnail and len(processed_images) != 1: |
|
thumbnail_img = image.resize((image_size, image_size)) |
|
processed_images.append(thumbnail_img) |
|
return processed_images |
|
|
|
def load_image(image_file, input_size=448, max_num=12): |
|
image = Image.open(image_file).convert('RGB') |
|
transform = build_transform(input_size=input_size) |
|
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) |
|
pixel_values = [transform(image) for image in images] |
|
pixel_values = torch.stack(pixel_values) |
|
return pixel_values |
|
|
|
# If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section. |
|
path = 'OS-Copilot/OS-Genesis-4B-AC' |
|
model = AutoModel.from_pretrained( |
|
path, |
|
torch_dtype=torch.bfloat16, |
|
low_cpu_mem_usage=True, |
|
trust_remote_code=True).eval().cuda() |
|
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False) |
|
|
|
# set the max number of tiles in `max_num` |
|
pixel_values = load_image('./web_dfacd48d-d2c2-492f-b94c-41e6a34ea99f.png', max_num=6).to(torch.bfloat16).cuda() |
|
generation_config = dict(max_new_tokens=1024, do_sample=True) |
|
|
|
question = "<image>\nYou are a GUI task expert, I will provide you with a high-level instruction, an action history, a screenshot with its corresponding accessibility tree.\n High-level instruction: {high_level_instruction}\n Action history: {action_history}\n Accessibility tree: {a11y_tree}\n Please generate the low-level thought and action for the next step." |
|
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True) |
|
print(f'User: {question}\nAssistant: {response}') |
|
``` |
|
|
|
|
|
## Citation |
|
If you find this repository helpful, feel free to cite our paper: |
|
```bibtex |
|
@article{sun2024osgenesis, |
|
title={OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis}, |
|
author={Qiushi Sun and Kanzhi Cheng and Zichen Ding and Chuanyang Jin and Yian Wang and Fangzhi Xu and Zhenyu Wu and Chengyou Jia and Liheng Chen and Zhoumianze Liu and Ben Kao and Guohao Li and Junxian He and Yu Qiao and Zhiyong Wu}, |
|
journal={arXiv preprint arXiv:2412.19723}, |
|
year={2024} |
|
} |
|
``` |