|
--- |
|
license: apache-2.0 |
|
library_name: transformers |
|
base_model: Qwen/Qwen2-VL-7B-Instruct |
|
pipeline_tag: image-text-to-text |
|
--- |
|
|
|
# OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis |
|
|
|
<div align="center"> |
|
|
|
[\[🏠Homepage\]](https://qiushisun.github.io/OS-Genesis-Home/) [\[💻Code\]](https://github.com/OS-Copilot/OS-Genesis) [\[📝Paper\]](https://arxiv.org/abs/2412.19723) [\[🤗Models\]](https://huggingface.co/collections/OS-Copilot/os-genesis-6768d4b6fffc431dbf624c2d)[\[🤗Data\]](https://huggingface.co/collections/OS-Copilot/os-genesis-6768d4b6fffc431dbf624c2d) |
|
|
|
</div> |
|
|
|
## Overview |
|
![os-genesis](https://cdn-uploads.huggingface.co/production/uploads/6064a0eeb1703ddba0d458b9/XvcAh92uvJQglmIu_L_nK.png) |
|
|
|
We introduce OS-Genesis, an interaction-driven pipeline that synthesizes high-quality and diverse GUI agent trajectory data without human supervision. By leveraging reverse task synthesis, OS-Genesis enables effective training of GUI agents to achieve superior performance on dynamic benchmarks such as AndroidWorld and WebArena. |
|
|
|
## Quick Start |
|
OS-Genesis-7B-AC is a mobile action model finetuned from [Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct). |
|
|
|
### OS-Genesis AC Family Models |
|
In the following table, we provide an overview of the OS-Genesis AC Family Models used for evaluating the AndroidControl Benchmark. |
|
|
|
| Model Name | Base Model | Training Data | HF Link | |
|
| :-------------: | :-------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------: | :---------------------------------------------------------: | |
|
| OS-Genesis-4B-AC | [InternVL2-4B](https://huggingface.co/OpenGVLab/InternVL2-4B) | [OS-Genesis-ac-training-data](https://huggingface.co/datasets/OS-Copilot/OS-Genesis-mobile-data/blob/main/os_genesis_ac_training_data.jsonl) | [🤗 link](https://huggingface.co/OS-Copilot/OS-Genesis-4B-AC) | |
|
| OS-Genesis-7B-AC | [Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) | [OS-Genesis-ac-training-data](https://huggingface.co/datasets/OS-Copilot/OS-Genesis-mobile-data/blob/main/os_genesis_ac_training_data.jsonl) | [🤗 link](https://huggingface.co/OS-Copilot/OS-Genesis-7B-AC) | |
|
| OS-Genesis-8B-AC | [InternVL2-8B](https://huggingface.co/OpenGVLab/InternVL2-8B) | [OS-Genesis-ac-training-data](https://huggingface.co/datasets/OS-Copilot/OS-Genesis-mobile-data/blob/main/os_genesis_ac_training_data.jsonl) | [🤗 link](https://huggingface.co/OS-Copilot/OS-Genesis-8B-AC) | |
|
|
|
|
|
### Inference Example |
|
First, ensure that the necessary dependencies are installed: |
|
``` |
|
pip install transformers |
|
pip install qwen-vl-utils |
|
``` |
|
For evaluating the AndroidControl Benchmark, please refer to the [**evaluation code**](https://github.com/OS-Copilot/OS-Genesis/tree/main/evaluation/android_control). |
|
|
|
Inference code example: |
|
```python |
|
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor |
|
from qwen_vl_utils import process_vision_info |
|
|
|
# Default: Load the model on the available device(s) |
|
model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
"OS-Copilot/OS-Genesis-7B-AC", torch_dtype="auto", device_map="auto" |
|
) |
|
processor = AutoProcessor.from_pretrained("OS-Copilot/OS-Atlas-Base-7B") |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "image", |
|
"image": "./web_6f93090a-81f6-489e-bb35-1a2838b18c01.png", |
|
}, |
|
{"type": "text", "text": "You are a GUI task expert, I will provide you with a high-level instruction, an action history, a screenshot with its corresponding accessibility tree.\n High-level instruction: {high_level_instruction}\n Action history: {action_history}\n Accessibility tree: {a11y_tree}\n Please generate the low-level thought and action for the next step."}, |
|
], |
|
} |
|
] |
|
|
|
|
|
# Preparation for inference |
|
text = processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
inputs = inputs.to("cuda") |
|
|
|
# Inference: Generation of the output |
|
generated_ids = model.generate(**inputs, max_new_tokens=128) |
|
|
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
|
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=False, clean_up_tokenization_spaces=False |
|
) |
|
print(output_text) |
|
# <|object_ref_start|>language switch<|object_ref_end|><|box_start|>(576,12),(592,42)<|box_end|><|im_end|> |
|
``` |
|
|
|
|
|
|
|
## Citation |
|
If you find this repository helpful, feel free to cite our paper: |
|
```bibtex |
|
@article{sun2024genesis, |
|
title={OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis}, |
|
author={Sun, Qiushi and Cheng, Kanzhi and Ding, Zichen and Jin, Chuanyang and Wang, Yian and Xu, Fangzhi and Wu, Zhenyu and Jia, Chengyou and Chen, Liheng and Liu, Zhoumianze and others}, |
|
journal={arXiv preprint arXiv:2412.19723}, |
|
year={2024} |
|
} |
|
``` |