|
import shap |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torchvision import models |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
# Custom BasicBlock to avoid in-place operations |
|
class CustomBasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, in_planes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): |
|
super(CustomBasicBlock, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) |
|
self.bn1 = norm_layer(planes) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) |
|
self.bn2 = norm_layer(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
identity = x.clone() |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = F.relu(out.clone(), inplace=False) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x.clone()) |
|
|
|
out = out.clone() + identity # Clone before addition to avoid in-place modification |
|
out = F.relu(out.clone(), inplace=False) |
|
|
|
return out |
|
|
|
# Custom ResNet using CustomBasicBlock |
|
class CustomResNet(nn.Module): |
|
def __init__(self, block, layers, num_classes=1000): |
|
super(CustomResNet, self).__init__() |
|
self.inplanes = 64 |
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) |
|
self.bn1 = nn.BatchNorm2d(64) |
|
self.relu = nn.ReLU(inplace=False) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) |
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) |
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) |
|
self.fc = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1): |
|
norm_layer = nn.BatchNorm2d |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), |
|
norm_layer(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample, groups=1, base_width=64, dilation=1, norm_layer=norm_layer)) |
|
self.inplanes = planes * block.expansion |
|
for _ in range(1, blocks): |
|
layers.append(block(self.inplanes, planes, groups=1, base_width=64, dilation=1, norm_layer=norm_layer)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x.clone()) # Clone to avoid in-place operation |
|
x = self.maxpool(x) |
|
|
|
x = self.layer1(x.clone()) # Clone to avoid in-place operation |
|
x = self.layer2(x.clone()) # Clone to avoid in-place operation |
|
x = self.layer3(x.clone()) # Clone to avoid in-place operation |
|
x = self.layer4(x.clone()) # Clone to avoid in-place operation |
|
|
|
x = self.avgpool(x) |
|
x = torch.flatten(x, 1) |
|
x = self.fc(x.clone()) # Clone to avoid in-place operation |
|
|
|
return x |
|
|
|
# Initialize the custom model with pre-trained weights |
|
model = CustomResNet(CustomBasicBlock, [2, 2, 2, 2]) |
|
state_dict = models.resnet18(weights=models.ResNet18_Weights.IMAGENET1K_V1).state_dict() |
|
model.load_state_dict(state_dict) |
|
model.eval() |
|
|
|
# Initialize SHAP explainer with the custom model |
|
explainer = shap.DeepExplainer(model, torch.randn(1, 3, 224, 224)) |
|
|
|
# Generate SHAP values for an input image |
|
sample_image = torch.randn(1, 3, 224, 224) |
|
shap_values = explainer.shap_values(sample_image, check_additivity=False) |
|
|
|
# Convert SHAP values and sample image to numpy for SHAP visualization |
|
shap_values_class_0 = shap_values[0][0] # Extract SHAP values for the first class |
|
sample_image_np = sample_image.squeeze().permute(1, 2, 0).detach().numpy() |
|
|
|
# Normalize sample image and SHAP values to range [0, 1] for visualization |
|
sample_image_np = np.clip(sample_image_np, 0, 1) |
|
shap_min, shap_max = shap_values_class_0.min(), shap_values_class_0.max() |
|
shap_values_class_0 = (shap_values_class_0 - shap_min) / (shap_max - shap_min) |
|
|
|
# Ensure both `sample_image_np` and `shap_values_class_0` are NumPy arrays with correct shapes for image_plot |
|
sample_image_np = np.array([sample_image_np]) # Add batch dimension for SHAP |
|
shap_values_class_0 = np.array([shap_values_class_0]) # Add batch dimension for SHAP |
|
|
|
# Visualize SHAP values for the first class |
|
shap.image_plot(shap_values_class_0, sample_image_np) |