segformer-v-mesh-0

This model is a fine-tuned version of nvidia/mit-b2 on the Onegafer/vehicle_segmentation dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0360
  • Mean Iou: 0.4403
  • Mean Accuracy: 0.8806
  • Overall Accuracy: 0.8806
  • Accuracy Background: nan
  • Accuracy Windows: 0.8806
  • Iou Background: 0.0
  • Iou Windows: 0.8806

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Windows Iou Background Iou Windows
0.2932 0.16 20 0.3269 0.2578 0.5156 0.5156 nan 0.5156 0.0 0.5156
0.1417 0.31 40 0.1235 0.3790 0.7580 0.7580 nan 0.7580 0.0 0.7580
0.0952 0.47 60 0.1245 0.4606 0.9211 0.9211 nan 0.9211 0.0 0.9211
0.0778 0.62 80 0.0628 0.4042 0.8084 0.8084 nan 0.8084 0.0 0.8084
0.0448 0.78 100 0.0512 0.4161 0.8322 0.8322 nan 0.8322 0.0 0.8322
0.0323 0.94 120 0.0435 0.4167 0.8334 0.8334 nan 0.8334 0.0 0.8334
0.0337 1.09 140 0.0405 0.4131 0.8262 0.8262 nan 0.8262 0.0 0.8262
0.0586 1.25 160 0.0409 0.4509 0.9017 0.9017 nan 0.9017 0.0 0.9017
0.0591 1.41 180 0.0404 0.4310 0.8620 0.8620 nan 0.8620 0.0 0.8620
0.0953 1.56 200 0.0386 0.4366 0.8732 0.8732 nan 0.8732 0.0 0.8732
0.0607 1.72 220 0.0374 0.4414 0.8828 0.8828 nan 0.8828 0.0 0.8828
0.0387 1.88 240 0.0360 0.4403 0.8806 0.8806 nan 0.8806 0.0 0.8806

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
5
Safetensors
Model size
27.3M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Onegafer/segformer-v-mesh-0

Base model

nvidia/mit-b2
Finetuned
(13)
this model