update model card README.md
Browse files
README.md
CHANGED
@@ -16,14 +16,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [nvidia/mit-b2](https://huggingface.co/nvidia/mit-b2) on the Onegafer/vehicle_segmentation dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 0.
|
20 |
-
- Mean Iou: 0.
|
21 |
-
- Mean Accuracy: 0.
|
22 |
-
- Overall Accuracy: 0.
|
23 |
- Accuracy No: nan
|
24 |
-
- Accuracy Yes: 0.
|
25 |
- Iou No: 0.0
|
26 |
-
- Iou Yes: 0.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -48,18 +48,13 @@ The following hyperparameters were used during training:
|
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
-
- num_epochs:
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy No | Accuracy Yes | Iou No | Iou Yes |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-----------:|:------------:|:------:|:-------:|
|
57 |
-
| 0.
|
58 |
-
| 0.1487 | 0.31 | 40 | 0.1029 | 0.3193 | 0.6386 | 0.6386 | nan | 0.6386 | 0.0 | 0.6386 |
|
59 |
-
| 0.0993 | 0.47 | 60 | 0.0861 | 0.4281 | 0.8562 | 0.8562 | nan | 0.8562 | 0.0 | 0.8562 |
|
60 |
-
| 0.1559 | 0.62 | 80 | 0.0603 | 0.3784 | 0.7568 | 0.7568 | nan | 0.7568 | 0.0 | 0.7568 |
|
61 |
-
| 0.0675 | 0.78 | 100 | 0.0536 | 0.3889 | 0.7777 | 0.7777 | nan | 0.7777 | 0.0 | 0.7777 |
|
62 |
-
| 0.0826 | 0.94 | 120 | 0.0513 | 0.4015 | 0.8030 | 0.8030 | nan | 0.8030 | 0.0 | 0.8030 |
|
63 |
|
64 |
|
65 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [nvidia/mit-b2](https://huggingface.co/nvidia/mit-b2) on the Onegafer/vehicle_segmentation dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.2948
|
20 |
+
- Mean Iou: 0.2111
|
21 |
+
- Mean Accuracy: 0.4222
|
22 |
+
- Overall Accuracy: 0.4222
|
23 |
- Accuracy No: nan
|
24 |
+
- Accuracy Yes: 0.4222
|
25 |
- Iou No: 0.0
|
26 |
+
- Iou Yes: 0.4222
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 0.2
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy No | Accuracy Yes | Iou No | Iou Yes |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-----------:|:------------:|:------:|:-------:|
|
57 |
+
| 0.3775 | 0.16 | 20 | 0.2948 | 0.2111 | 0.4222 | 0.4222 | nan | 0.4222 | 0.0 | 0.4222 |
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
|
60 |
### Framework versions
|