license: apache-2.0
language:
- en
tags:
- sft
pipeline_tag: text-generation
widget:
- text: >-
<|prompter|>What is a meme, and what's the history behind this
word?<|endoftext|><|assistant|>
- text: <|prompter|>What's the Earth total population<|endoftext|><|assistant|>
- text: >-
<|prompter|>Write a story about future of AI
development<|endoftext|><|assistant|>
Open-Assistant StableLM-7B SFT-7 Model
This is the 7th iteration English supervised-fine-tuning (SFT) model of the Open-Assistant project. It is based on a StableLM 7B that was fine-tuned on human demonstrations of assistant conversations collected through the https://open-assistant.io/ human feedback web app before April 12, 2023.
Model Details
- Developed by: Open-Assistant Contributors
- Model type: Transformer-based Language Model
- Language: English
- Finetuned from: stabilityai/stablelm-base-alpha-7b
- Code: Open-Assistant/model/model_training
- Demo: TODO
- License: Creative Commons license (CC BY-SA-4.0)
- Contact: Open-Assistant Discord
Prompting
Two special tokens are used to mark the beginning of user and assistant turns:
<|prompter|>
and <|assistant|>
. Each turn ends with a <|endoftext|>
token.
Input prompt example:
<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>
The input ends with the <|assistant|>
token to signal that the model should
start generating the assistant reply.
Dev Details
- wandb: https://wandb.ai/open-assistant/supervised-finetuning/runs/08dfhyuc
- base model: stabilityai/stablelm-base-alpha-7b
- checkpoint: 3 epochs (12000 steps)
command: deepspeed trainer_sft.py --configs defaults stablelm-7b oasst-mix --cache_dir /home/ubuntu/data_cache --output_dir .saved/stable-lm-7b-1 --num_train_epochs 4 --deepspeed
data:
oasst-mix:
save_strategy: epoch
sort_by_length: false
use_custom_sampler: false
datasets:
- oasst_export:
lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
input_file_path: 2023-04-12_oasst_release_ready_synth.jsonl.gz
- vicuna:
val_split: 0.05
max_val_set: 800
fraction: 1.0
- dolly15k:
val_split: 0.05
max_val_set: 300
- grade_school_math_instructions:
val_split: 0.05
- code_alpaca:
val_split: 0.05
max_val_set: 250
stablelm:
stablelm-7b:
dtype: fp16
log_dir: stablelm_log_7b
model_name: stabilityai/stablelm-base-alpha-7b
output_dir: stablelm_7b
max_length: 4096
warmup_steps: 100
gradient_checkpointing: true
gradient_accumulation_steps: 2
per_device_train_batch_size: 4
per_device_eval_batch_size: 4
eval_steps: 100
save_steps: 500
num_train_epochs: 4
save_total_limit: 4
use_flash_attention: true
zero config:
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupDecayLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto",
"total_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 2,
"allgather_partitions": true,
"allgather_bucket_size": 1e9,
"overlap_comm": false,
"reduce_scatter": true,
"reduce_bucket_size": 1e9,
"contiguous_gradients": true
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 2000,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}