|
---- |
|
license: agpl-3.0 |
|
language: |
|
- en |
|
- zh |
|
tags: |
|
- AI4S |
|
- MoE |
|
---- |
|
# SciDFM: Dialogue Foundation Model for Science |
|
|
|
SciDFM is the pioneering open-sourced dialogue foundation model tailored for science, which integrates a mixture-of-experts architecture into a transformer-based framework, aiming at enhancing its sophisticated scientific reasoning and understanding capabilities. SciDFM achieves strong performance on general scientific benchmarks such as SciEval and SciQ, and it reachs a SOTA performance on domain-specific benchmark among models of similar size. |
|
|
|
## News |
|
* **2024-06-28** The parameter of SciDFM-MoE-A5.6B-v1.0 is open-soursed! Technical report is coming soon. |
|
|
|
## Model Details |
|
|
|
SciDFM is based on a transformer architecture, and follows modifications of Llama, i.e. RMSNorm, RoPE and SwiGLU. SciDFM use the same hyper-parameters of OpenLLaMa-3B. And in order to better model knowledge of different disciplines, we replace the feed-forward block with Mixture-of-Expert (MoE) layers. |
|
|
|
## Training Details |
|
|
|
SciDFM is pre-trained on a large corpus containing ~300B science tokens and ~270B general tokens for two epochs, resulting in about 1.1T tokens consuming. And we further fine-tune SciDFM using ~9.3M instruction-following samples for 5 epochs to improve the performances on the downstream benchmarks. |
|
|
|
## Usage Details |
|
|
|
### Local Inference |
|
|
|
To load and run SciDFM locally, here is an example: |
|
|
|
```python |
|
import torch |
|
from transformers import LlamaTokenizer, AutoModelForCausalLM |
|
|
|
model_name_or_id = "OpenDFM/SciDFM-MoE-A5.6B-v1.0" |
|
tokenizer = LlamaTokenizer.from_pretrained(model_name_or_id, use_fast=False) |
|
model = AutoModelForCausalLM.from_pretrained(model_name_or_id, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True) |
|
|
|
chat_template = "<|user|>:{instruction}<|assistant|>:" |
|
input_text = "What is Mixture-of-Experts (MoE) in computer science?" |
|
input_text = chat_template.format(instruction=input_text) |
|
|
|
inputs = tokenizer(input_text, return_tensors="pt").to("cuda") |
|
generation_config = GenerationConfig( |
|
do_sample=True, |
|
top_k=20, |
|
top_p=0.9, |
|
temperature=0.9, |
|
max_new_tokens=1024, |
|
eos_token_id=tokenizer.eos_token_id |
|
) |
|
|
|
outputs = model.generate(**inputs, generation_config=generation_config) |
|
generated_text = tokenizer.decode(outputs, skip_special_tokens=True)[0][len(input_text):] |
|
print(generated_text.strip()) |
|
``` |
|
|
|
### SMILES preprocess |
|
|
|
When there involves SMILES notation in your input, we recommend to preprocess the SMILES with the `rdkit` package to canonicalize the SMILES. Here is an example: |
|
```python |
|
from rdkit import Chem |
|
def canonicalize_smiles(smiles): |
|
mol = Chem.MolFromSmiles(smiles) |
|
if mol is None: |
|
return None |
|
return Chem.MolToSmiles(mol, isomericSmiles=True, kekuleSmiles=False) |
|
``` |
|
or directly: |
|
```python |
|
from rdkit import Chem |
|
def canonicalize_smiles(smiles): |
|
return Chem.CanonSmiles(smiles, useChiral=True) |
|
``` |
|
|
|
### Special Tokens preprocess |
|
|
|
If there is SMILES expression in your input, please first process it with the following function: |
|
|
|
```python |
|
import sentencepiece as spm |
|
|
|
smiles_model = spm.SentencePieceProcessor(model_file="smiles.model") |
|
|
|
def convert_smiles(smiles_str): |
|
pieces = smiles_model.encode_as_pieces(smiles_str)[1:] |
|
smiles = "".join([f"[ChemDFM_Start_SMILES_Unit]{piece}[ChemDFM_End_SMILES_Unit]" for piece in pieces]) |
|
return smiles |
|
|
|
convert_smiles("C(C(=O)O)N") |
|
``` |
|
|
|
And if there is protein sequece in your input, please first process it with the following function: |
|
|
|
```python |
|
def convert_protein(p_str): |
|
res = [f"<<protein>>{s}" for s in p_str] |
|
return "".join(res) |
|
|
|
convert_protein("MIRLGAPQTL") |
|
``` |
|
|
|
## Evaluation |
|
|
|
We briefly compare SciDFM-MoE-A5.6B-v1.0 with similar-sized instruction-tuned LLMs on scientific evaluation benchmarks. The results are shown below: |
|
| Model | SciEval | SciQ | ARC\_c | ARC\_e | GSM8K | MATH | MedQA | MMCQA | PMQA | Avg | |
|
|--------------------|---------|-------|--------|--------|-------|-------|-------|-------|-------|-------| |
|
| LLaMa2-7B | 27.06 | 57.00 | 36.43 | 46.59 | 3.94 | 3.96 | 26.32 | 29.84 | 66.80 | 32.95 | |
|
| Galactica-6.7B | 46.28 | 74.20 | 44.28 | 61.83 | 2.80 | 6.32 | 30.48 | 36.46 | 48.80 | 38.91 | |
|
| LLaMa2-13B | 33.88 | 78.10 | 56.66 | 72.35 | 22.82 | 3.90 | 32.68 | 34.28 | 77.80 | 45.45 | |
|
| ChatGLM2-6B | 54.25 | 75.80 | 57.08 | 73.57 | 25.09 | 7.18 | 27.42 | 34.21 | 60.40 | 45.94 | |
|
| Galactica-30B | 54.24 | 83.10 | 57.85 | 75.04 | 13.65 | 8.66 | 37.71 | 48.43 | 58.80 | 48.35 | |
|
| LLaMa3-8B | 59.70 | 90.00 | 71.16 | 84.05 | 5.91 | 7.00 | 48.78 | 52.74 | 26.60 | 49.59 | |
|
| ChatGLM3-6B | 51.13 | 77.60 | 60.84 | 75.97 | 60.27 | 23.52 | 24.59 | 31.39 | 51.80 | 50.53 | |
|
| SciGLM-6B | 61.22 | 88.70 | 77.47 | 86.57 | 42.23 | 16.40 | 42.81 | 44.94 | 73.60 | 59.12 | |
|
| SciDFM | 62.48 | 88.00 | 64.76 | 81.48 | 59.14 | 27.28 | 44.54 | 53.10 | 78.00 | 61.56 | |
|
| ChatGLM3-6B-base | 60.34 | 89.00 | 78.58 | 87.37 | 59.82 | 22.64 | 42.73 | 45.14 | 74.40 | 61.96 | |
|
| Llama3-8B-Instruct | 64.91 | 91.60 | 76.45 | 87.33 | 76.57 | 26.26 | 56.48 | 59.31 | 72.00 | 67.44 | |
|
|
|
## Citation |
|
|
|
``` |
|
comming soon... |
|
``` |