opengvlab-admin's picture
Update README.md
3ec3d5c verified
|
raw
history blame
12.1 kB
metadata
license: mit
datasets:
  - laion/laion2B-en
  - laion/laion-coco
  - laion/laion2B-multi
  - kakaobrain/coyo-700m
  - conceptual_captions
  - wanng/wukong100m
pipeline_tag: visual-question-answering

Model Card for Mini-InternVL-Chat-2B-V1.5

Image Description

Two interns holding hands, symbolizing the integration of InternViT and InternLM.

[InternVL 1.5 Technical Report] [CVPR Paper] [GitHub] [Chat Demo] [中文解读]

You can run multimodal large models using a 1080Ti now.

We are delighted to introduce the Mini-InternVL-Chat series. In the era of large language models, many researchers have started to focus on smaller language models, such as Gemma-2B, Qwen-1.8B, and InternLM2-1.8B. Inspired by their efforts, we have distilled our vision foundation model InternViT-6B-448px-V1-5 down to 300M and used InternLM2-Chat-1.8B or Phi-3-mini-128k-instruct as our language model. This resulted in a small multimodal model with excellent performance.

As shown in the figure below, we adopted the same model architecture as InternVL 1.5. We simply replaced the original InternViT-6B with InternViT-300M and InternLM2-Chat-20B with InternLM2-Chat-1.8B / Phi-3-mini-128k-instruct. For training, we used the same data as InternVL 1.5 to train this smaller model. Additionally, due to the lower training costs of smaller models, we used a context length of 8K during training.

image/png

Model Details

  • Model Type: multimodal large language model (MLLM)

  • Model Stats:

  • Training Strategy:

    • Learnable component in the pretraining stage: ViT + MLP
    • Learnable component in the finetuning stage: ViT + MLP + LLM
    • For more details on training hyperparameters, take a look at our code: pretrain | finetune

Released Models

Model Vision Foundation Model Release Date Note
InternVL-Chat-V1.5(🤗 HF link) InternViT-6B-448px-V1-5(🤗 HF link) 2024.04.18 support 4K image; super strong OCR; Approaching the performance of GPT-4V and Gemini Pro on various benchmarks like MMMU, DocVQA, ChartQA, MathVista, etc. (🔥new)
InternVL-Chat-V1.2-Plus(🤗 HF link ) InternViT-6B-448px-V1-2(🤗 HF link) 2024.02.21 more SFT data and stronger
InternVL-Chat-V1.2(🤗 HF link ) InternViT-6B-448px-V1-2(🤗 HF link) 2024.02.11 scaling up LLM to 34B
InternVL-Chat-V1.1(🤗 HF link) InternViT-6B-448px-V1-0(🤗 HF link) 2024.01.24 support Chinese and stronger OCR

Performance

image/png

Model Usage

We provide an example code to run Mini-InternVL-Chat-2B-V1.5 using transformers.

You can also use our online demo to get a quick experience of this model.

Please use transformers==4.37.2 to ensure the model works normally.

from transformers import AutoTokenizer, AutoModel
import torch
import torchvision.transforms as T
from PIL import Image

from torchvision.transforms.functional import InterpolationMode


IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)


def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform


def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio


def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images


def load_image(image_file, input_size=448, max_num=6):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values


path = "OpenGVLab/Mini-InternVL-Chat-2B-V1-5"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).eval().cuda()

tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
# set the max number of tiles in `max_num`
pixel_values = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()

generation_config = dict(
    num_beams=1,
    max_new_tokens=512,
    do_sample=False,
)

# single-round single-image conversation
question = "请详细描述图片" # Please describe the picture in detail
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(question, response)

# multi-round single-image conversation
question = "请详细描述图片" # Please describe the picture in detail
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(question, response)

question = "请根据图片写一首诗" # Please write a poem according to the picture
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(question, response)

# multi-round multi-image conversation
pixel_values1 = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=6).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)

question = "详细描述这两张图片" # Describe the two pictures in detail
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(question, response)

question = "这两张图片的相同点和区别分别是什么" # What are the similarities and differences between these two pictures
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(question, response)

# batch inference (single image per sample)
pixel_values1 = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=6).to(torch.bfloat16).cuda()
image_counts = [pixel_values1.size(0), pixel_values2.size(0)]
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)

questions = ["Describe the image in detail."] * len(image_counts)
responses = model.batch_chat(tokenizer, pixel_values,
                             image_counts=image_counts,
                             questions=questions,
                             generation_config=generation_config)
for question, response in zip(questions, responses):
    print(question)
    print(response)

Citation

If you find this project useful in your research, please consider citing:

@article{chen2023internvl,
  title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
  author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
  journal={arXiv preprint arXiv:2312.14238},
  year={2023}
}

License

This project is released under the MIT license.

Acknowledgement

InternVL is built with reference to the code of the following projects: OpenAI CLIP, Open CLIP, CLIP Benchmark, EVA, InternImage, ViT-Adapter, MMSegmentation, Transformers, DINOv2, BLIP-2, Qwen-VL, and LLaVA-1.5. Thanks for their awesome work!