Transformers
Safetensors
English
V2PE
Inference Endpoints
V2PE / V2PE-256K /modeling_internvl_chat.py
Weiyun1025's picture
Upload folder using huggingface_hub
81d64a9 verified
raw
history blame
63.6 kB
# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import warnings
from typing import Any, List, Optional, Tuple, Union
import torch.distributed as dist
import torch.utils.checkpoint
import transformers
from internvl.conversation import get_conv_template
from internvl.model.internlm2.modeling_internlm2 import InternLM2ForCausalLM
from internvl.model.phi3.modeling_phi3 import Phi3ForCausalLM
from peft import LoraConfig, get_peft_model
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
LlamaTokenizer, Qwen2ForCausalLM)
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import ModelOutput, logging
from .configuration_internvl_chat import InternVLChatConfig
from .modeling_intern_vit import InternVisionModel
logger = logging.get_logger(__name__)
from transformers import AutoTokenizer
import json
tokenizer_path="/mnt/petrelfs/share_data/chenziyi/InternVL2-2B"
global_tokenizer = AutoTokenizer.from_pretrained(
tokenizer_path, add_eos_token=False, trust_remote_code=True, use_fast=False)
import random
def version_cmp(v1, v2, op='eq'):
import operator
from packaging import version
op_func = getattr(operator, op)
return op_func(version.parse(v1), version.parse(v2))
def extract_local(value, rank, world_size, dim=1):
value_chunks = value.chunk(2 * world_size, dim=dim)
local_value = torch.cat(
[value_chunks[rank], value_chunks[2 * world_size - rank - 1]], dim=dim
)
return local_value.to(value.device)
def extract_local2(value, rank, world_size, dim=1):
dimension_size = value.shape[dim]
sub_seq_length = dimension_size // world_size
sub_seq_start = rank * sub_seq_length
sub_seq_end = (rank + 1) * sub_seq_length
local_value = value[:, sub_seq_start:sub_seq_end]
return local_value.to(value.device)
class GatherLayer(torch.autograd.Function):
"""Gather tensors from all process, supporting backward propagation."""
@staticmethod
def forward(ctx, input):
ctx.save_for_backward(input)
output = [torch.zeros_like(input) for _ in range(dist.get_world_size(local_group))]
dist.all_gather(output, input, group=local_group)
return torch.stack(output, 0)
@staticmethod
def backward(ctx, grads):
(input,) = ctx.saved_tensors
dist.all_reduce(grads, group=local_group)
grad_out = torch.zeros_like(input)
grad_out[:] = grads[dist.get_rank(local_group)]
return grad_out
class InternVLChatModel(PreTrainedModel):
config_class = InternVLChatConfig
main_input_name = 'pixel_values'
_no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer',
'Phi3DecoderLayer', 'Qwen2DecoderLayer']
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
super().__init__(config)
assert version_cmp(transformers.__version__, '4.37.0', 'ge')
image_size = config.force_image_size or config.vision_config.image_size
patch_size = config.vision_config.patch_size
self.patch_size = patch_size
self.select_layer = config.select_layer
self.template = config.template
# batch_size: 批处理大小
# patch_size: 图片分块大小
# downsample_ratio: 缩放比例,将高分辨率图像转换为低分辨率图像
# self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
self.downsample_ratio = config.downsample_ratio
self.ps_version = config.ps_version
self.compress_seq = config.compress_seq
self.attn_type = config.attn_type
self.posid_type = config.posid_type
if self.posid_type is None:
self.posid_type='default'
assert self.posid_type in ['default','None', 'qkvLearnable', 'qkLearnable', '1dROPE', '2dROPE']
self.group_list = config.group_list
self.chunk_num = config.chunk_num
self.interaction = config.interaction
logger.info(f'num_image_token: {self.num_image_token}')
logger.info(f'ps_version: {self.ps_version}')
config.llm_config.posid_type = self.posid_type
config.llm_config.rope_pos_id_version=config.rope_pos_id_version
if vision_model is not None:
self.vision_model = vision_model
else:
self.vision_model = InternVisionModel(config.vision_config)
if language_model is not None:
self.language_model = language_model
else:
if config.llm_config.architectures[0] == 'LlamaForCausalLM':
self.language_model = LlamaForCausalLM(config.llm_config)
elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
self.language_model = InternLM2ForCausalLM(config.llm_config)
elif config.llm_config.architectures[0] == 'Phi3ForCausalLM':
self.language_model = Phi3ForCausalLM(config.llm_config)
elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
self.language_model = Qwen2ForCausalLM(config.llm_config)
else:
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
vit_hidden_size = config.vision_config.hidden_size
llm_hidden_size = config.llm_config.hidden_size
self.mlp1 = nn.Sequential(
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
nn.GELU(),
nn.Linear(llm_hidden_size, llm_hidden_size)
)
if self.posid_type in ['qkvLearnable']:
self.local_posid = nn.Embedding(self.num_image_token,llm_hidden_size)
self.img_context_token_id = None
self.conv_template = get_conv_template(self.template)
self.system_message = self.conv_template.system_message
self.num_samples = 0
if config.use_backbone_lora:
self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora)
if config.use_llm_lora:
self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora)
def init_embed(self):
if hasattr(self,'local_posid'):
nn.init.normal_(self.local_posid.weight, mean=0.0, std=0.02)
def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
lora_config = LoraConfig(
r=r,
target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'],
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
)
self.vision_model = get_peft_model(self.vision_model, lora_config)
self.vision_model.print_trainable_parameters()
def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
lora_config = LoraConfig(
r=r,
target_modules=['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj'],
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
task_type='CAUSAL_LM'
)
self.language_model = get_peft_model(self.language_model, lora_config)
self.language_model.enable_input_require_grads()
self.language_model.print_trainable_parameters()
def forward(
self,
pixel_values: torch.FloatTensor,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
image_flags: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
statistics: Optional[torch.LongTensor] = None,
loss_weight: Optional[List] = None,
loss_reduction_all_gather: Optional[bool] = False,
origin_cu_seq_lens: Optional[torch.Tensor] = None,
rope_pos_id: Optional[torch.Tensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
# import ipdb
# ipdb.set_trace()
if isinstance(position_ids,list):
position_ids=torch.tensor(position_ids).to(input_ids.device)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# print("Printing decoded input ids")
# decoded_texts = [global_tokenizer.decode(ids, skip_special_tokens=True) for ids in input_ids]
# for i, text in enumerate(decoded_texts):
# print(f"Sample {i+1}: {text}")
global local_group
if self.group_list is not None:
for group_idx,group in enumerate(self.group_list):
if type(group)==torch.distributed.distributed_c10d.ProcessGroup:
# assert type(group)==torch.distributed.distributed_c10d.ProcessGroup
break # print("Printing decoded input ids")
local_group=group
else:
group=None
local_group=None
image_flags = image_flags.squeeze(-1)
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
if self.attn_type:
if self.attn_type=='ring':
group_size = dist.get_world_size(group)
img_num_dim = 0
pad_num=0
if pixel_values.shape[img_num_dim] > group_size:
if pixel_values.shape[img_num_dim] % group_size!=0:
pad_num = group_size - pixel_values.shape[img_num_dim] % group_size
if pad_num < group_size: # 仅在需要填充时进行
# 创建填充的张量,与 pixel_values 的形状匹配
pad_shape = list(pixel_values.shape)
pad_shape[img_num_dim] = pad_num # 在目标维度上设置填充值
pad_pixel = torch.zeros(pad_shape, dtype=pixel_values.dtype, device=pixel_values.device)
# 在指定维度上拼接原始张量和填充张量
pixel_values = torch.cat([pixel_values, pad_pixel], dim=img_num_dim)
chunked_pixel=torch.chunk(pixel_values, group_size, dim=img_num_dim)
local_pixel=chunked_pixel[dist.get_rank(group)]
local_vit_embeds=self.extract_feature(local_pixel)
vit_embeds=GatherLayer.apply(local_vit_embeds)
vit_embeds=vit_embeds.view(-1,vit_embeds.shape[-2],vit_embeds.shape[-1])
if pad_num>0:
vit_embeds=vit_embeds[:-pad_num]
else:
vit_embeds = self.extract_feature(pixel_values)
else:
vit_embeds = self.extract_feature(pixel_values)
else:
vit_embeds = self.extract_feature(pixel_values)
if self.posid_type=='qkvLearnable':
# added_embeds = self.local_posid(torch.arange(self.num_image_token).to(pixel_values.device))
# vit_embeds = vit_embeds + added_embeds
vit_embeds=vit_embeds+self.local_posid(torch.arange(self.num_image_token).to(pixel_values.device))
vit_embeds = vit_embeds[image_flags == 1]
vit_batch_size = pixel_values.shape[0]
# print("Printing pixiel shape", pixel_values.shape)
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
if statistics is not None:
num_samples, num_padding_tokens, num_padding_images = statistics.tolist()
self.num_samples += num_samples
print(f'total_samples={self.num_samples}, {num_samples=}, {num_padding_tokens=}, {num_padding_images=}')
input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.img_context_token_id)
try:
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
ignore_flag = False
except Exception as e:
vit_embeds = vit_embeds.reshape(-1, C)
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
f'vit_embeds.shape={vit_embeds.shape}')
n_token = selected.sum()
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
# ignore_flag = True
ignore_flag = False
input_embeds = input_embeds.reshape(B, N, C)
if self.attn_type:
if self.attn_type=='ulysses':
input_embeds=extract_local2(input_embeds,dist.get_rank(group),dist.get_world_size(group))
position_ids=extract_local2(position_ids,dist.get_rank(group),dist.get_world_size(group))
labels=extract_local2(labels,dist.get_rank(group),dist.get_world_size(group))
loss_weight=extract_local2(torch.tensor(loss_weight),dist.get_rank(group),dist.get_world_size(group))
loss_weight=list(loss_weight.numpy())
attention_mask=attention_mask//dist.get_world_size(group)
elif self.attn_type=='ring':
input_embeds=extract_local(input_embeds,dist.get_rank(group),dist.get_world_size(group))
position_ids=extract_local(position_ids,dist.get_rank(group),dist.get_world_size(group))
labels=extract_local(labels,dist.get_rank(group),dist.get_world_size(group))
if loss_weight:
loss_weight=extract_local(torch.tensor(loss_weight),dist.get_rank(group),dist.get_world_size(group))
loss_weight=list(loss_weight.numpy())
attention_mask=attention_mask//dist.get_world_size(group)
outputs = self.language_model(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
compress_seq=self.compress_seq,
group_list=self.group_list,
chunk_num=self.chunk_num,
origin_cu_seq_lens=origin_cu_seq_lens,
interaction=self.interaction,
selected=selected
)
logits = outputs.logits
loss = None
if labels is not None and loss_weight is not None:
# decoded_labels = global_tokenizer.decode(labels[0][labels[0]!=-100], skip_special_tokens=True)
loss_weight = torch.tensor(loss_weight, dtype=torch.float32, device=labels.device)
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
shift_weights = loss_weight[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss(reduction='none')
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
shift_labels = shift_labels.view(-1)
shift_weights = shift_weights.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
shift_weights = shift_weights.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
shift_weights_sum = shift_weights.sum()
if loss_reduction_all_gather:
dist.all_reduce(shift_weights_sum, op=dist.ReduceOp.AVG)
loss = loss * shift_weights
loss = loss.sum() / shift_weights_sum
if ignore_flag:
loss = loss * 0.0
elif labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if ignore_flag:
loss = loss * 0.0
params=dict(self.named_parameters())
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
# self.update_log(log_dict)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def pixel_shuffle(self, x, scale_factor=0.5):
n, w, h, c = x.size()
# N, W, H, C --> N, W, H * scale, C // scale
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
x = x.permute(0, 2, 1, 3).contiguous()
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
int(c / (scale_factor * scale_factor)))
if self.ps_version == 'v1':
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
'which results in a transposed image.')
else:
x = x.permute(0, 2, 1, 3).contiguous()
return x
def extract_feature(self, pixel_values):
# 选择视觉模型特定层的输出作为图片特征
if self.select_layer == -1:
vit_embeds = self.vision_model(
pixel_values=pixel_values,
output_hidden_states=False,
return_dict=True).last_hidden_state
else:
vit_embeds = self.vision_model(
pixel_values=pixel_values,
output_hidden_states=True,
return_dict=True).hidden_states[self.select_layer]
# [batch_size, num_patches, vit_hidden_size]
# 去除第一个标记
vit_embeds = vit_embeds[:, 1:, :]
# [batch_size, num_patches, vit_hidden_size] -> [batch_size, h, w, vit_hidden_size]
h = w = int(vit_embeds.shape[1] ** 0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
# 像素混洗,降低分辨率,减少 num_patches
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
# 线性层,vit_hidden_size -> llm_hidden_size
vit_embeds = self.mlp1(vit_embeds)
return vit_embeds
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
if history is not None or return_history:
print('Now multi-turn chat is not supported in batch_chat.')
raise NotImplementedError
if image_counts is not None:
num_patches_list = image_counts
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
self.img_context_token_id = img_context_token_id
if verbose and pixel_values is not None:
image_bs = pixel_values.shape[0]
print(f'dynamic ViT batch size: {image_bs}')
queries = []
for idx, num_patches in enumerate(num_patches_list):
question = questions[idx]
if pixel_values is not None and '<image>' not in question:
question = '<image>\n' + question
template = get_conv_template(self.template)
template.append_message(template.roles[0], question)
template.append_message(template.roles[1], None)
query = template.get_prompt()
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
query = query.replace('<image>', image_tokens, 1)
queries.append(query)
# tokenizer.padding_side = 'left'
model_inputs = tokenizer(queries, return_tensors='pt', padding=False)
input_ids = model_inputs['input_ids'].cuda()
attention_mask = model_inputs['attention_mask'].cuda()
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
generation_config['eos_token_id'] = eos_token_id
generation_output = self.generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
**generation_config
)
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
responses = [response.split(template.sep)[0].strip() for response in responses]
return responses
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
verbose=False,**kwargs):
if history is None and pixel_values is not None and '<image>' not in question:
question = '<image>\n' + question
# num_patches_list 用法:
if num_patches_list is None:
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
# 设置图片上下文的 token id
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
self.img_context_token_id = img_context_token_id
# 获取 Chat 模板
template = get_conv_template(self.template)
# 设置系统消息
template.system_message = self.system_message
# 设置分隔符 End Of Sentence
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
# 将历史对话添加到模板中
history = [] if history is None else history
for (old_question, old_answer) in history:
template.append_message(template.roles[0], old_question)
template.append_message(template.roles[1], old_answer)
template.append_message(template.roles[0], question)
template.append_message(template.roles[1], None)
# 生成查询
query = template.get_prompt()
# verbose: 是否打印调试信息
if verbose and pixel_values is not None:
# pixel_values 形状: [batch_size, channels, height, width]
# 其中 batch_size 即图片数量
# 打印批处理大小信息
image_bs = pixel_values.shape[0]
print(f'dynamic ViT batch size: {image_bs}')
# 将图片 token 插入到查询中,图片用占位符 IMG_CONTEXT_TOKEN 代替
for num_patches in num_patches_list:
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
query = query.replace('<image>', image_tokens, 1)
# 用分词器将查询转换为模型输入
model_inputs = tokenizer(query, return_tensors='pt')
# 文本对应的 token id,转换为 cuda 张量
# ID 长度就是 Token 长度,形状为 [1, sequence_length]
input_ids = model_inputs['input_ids'].cuda()
# print(f'Token length: {input_ids.shape[1]}')
# 实际输入掩码为 1,填充部分掩码为 0
attention_mask = model_inputs['attention_mask'].cuda()
# 分隔符 End Of Sentence
generation_config['eos_token_id'] = eos_token_id
if 'rope_pos_id_version' in kwargs:
self.language_model.rope_pos_id_version=kwargs['rope_pos_id_version']
pos_ids=[]
ret={'input_ids':input_ids,'attention_mask':attention_mask}
for i in range(input_ids.shape[0]):
# cur_position_ids = ret['attention_mask'][i].long().cumsum(-1) - 1
# cur_position_ids.masked_fill_(ret['attention_mask'][i] == 0, 1)
if kwargs['rope_pos_id_version'] == 'default':
cur_dtype = torch.long
# bf16 -> long 会产生截断
else:
cur_dtype = torch.float32
if 'rope_pos_id_stride' in kwargs:
rope_pos_id_stride = kwargs['rope_pos_id_stride']
else:
rope_pos_id_stride = None
pos_ids.append(torch.tensor(get_rope_pos_id(ret, num_tiles=kwargs['num_tiles'][i], dtype=cur_dtype,
rope_pos_id_version=kwargs['rope_pos_id_version'],
position_id=torch.arange(0,input_ids.shape[1]),
# position_id=cur_position_ids,
boxes=kwargs['all_boxes'][i],
orig_size=None,
images=kwargs['image_list'][i],
IMG_START_TOKEN=IMG_START_TOKEN,
IMG_END_TOKEN=IMG_END_TOKEN, rope_pos_id_stride=rope_pos_id_stride)).cuda())
pos_ids=torch.stack(pos_ids)
if self.attn_type=='ulysses' or self.attn_type=='ring':
if input_ids.shape[1]%(2*dist.get_world_size())!=0:
num_padding = 2*dist.get_world_size()-input_ids.shape[1]%(2*dist.get_world_size())
# 创建需要的 padding,input_ids 和 labels 填充值为 -100
padding_shape = (input_ids.shape[0], num_padding)
input_padding = torch.full(padding_shape, 1, dtype=input_ids.dtype, device=input_ids.device)
attn_mask_padding = torch.full(padding_shape, 1, dtype=attention_mask.dtype, device=attention_mask.device)
# 对 input_ids 和 labels 进行 padding
input_ids = torch.cat([input_ids, input_padding], dim=1)
attention_mask=torch.cat([attention_mask,attn_mask_padding],dim=1)
# position_ids 添加正确的递增填充
max_pos_id = pos_ids.max() + 1 # 找到当前最大 position_id
pos_padding = torch.arange(max_pos_id, max_pos_id + num_padding, device=input_ids.device)
pos_padding = pos_padding.unsqueeze(0).expand(input_ids.shape[0], -1)
pos_ids = torch.cat([pos_ids, pos_padding], dim=1)
generation_output = self.generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=pos_ids,
**generation_config,
)
else:
self.language_model.rope_pos_id_version='default'
if self.attn_type=='ulysses' or self.attn_type=='ring':
if input_ids.shape[1]%(2*dist.get_world_size())!=0:
num_padding = 2*dist.get_world_size()-input_ids.shape[1]%(2*dist.get_world_size())
# 创建需要的 padding,input_ids 和 labels 填充值为 -100
padding_shape = (input_ids.shape[0], num_padding)
input_padding = torch.full(padding_shape, 1, dtype=input_ids.dtype, device=input_ids.device)
attn_mask_padding = torch.full(padding_shape, 0, dtype=attention_mask.dtype, device=attention_mask.device)
# 对 input_ids 和 labels 进行 padding
input_ids = torch.cat([input_ids, input_padding], dim=1)
attention_mask=torch.cat([attention_mask,attn_mask_padding],dim=1)
generation_output = self.generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
**generation_config,
)
# 解码生成的输出,跳过特殊 token
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
# 根据分隔符分段
response = response.split(template.sep)[0].strip()
# 将结果写入历史
history.append((question, response))
if return_history:
return response, history
else:
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
if verbose:
print(query_to_print, response)
return response
@torch.no_grad()
def generate(
self,
pixel_values: Optional[torch.FloatTensor] = None,
input_ids: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
visual_features: Optional[torch.FloatTensor] = None,
generation_config: Optional[GenerationConfig] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**generate_kwargs,
) -> torch.LongTensor:
assert self.img_context_token_id is not None
if pixel_values is not None:
# 提取图片 embedding
# [batch_size, channels, height, width] -> [batch_size, 每张图片的 patch 数, embedding_dim]
if visual_features is not None:
vit_embeds = visual_features
else:
vit_embeds = self.extract_feature(pixel_values)
if self.posid_type=='qkvLearnable':
added_embeds = self.local_posid(torch.arange(self.num_image_token).to(pixel_values.device))
vit_embeds = vit_embeds + added_embeds
# vit_embeds=vit_embeds+self.local_posid(torch.arange(self.num_image_token).to(pixel_values.device))
# 通过嵌入层将 token id 转化为嵌入向量
# 其中图片用占位符 IMG_CONTEXT_TOKEN 的 embedding 代替
input_embeds = self.language_model.get_input_embeddings()(input_ids)
# [1, sequence_length, embedding_dim] -> [sequence_length, embedding_dim]
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
# [1, sequence_length] -> [sequence_length]
input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.img_context_token_id)
assert selected.sum() != 0
# 图片 embedding: [总 Patch 数, embedding_dim]
# 每个 patch 与一个占位符对应,对应一列 embedding
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
input_embeds = input_embeds.reshape(B, N, C)
else:
# 通过嵌入层将 token id 转化为嵌入向量
# 例如 one hot 编码、Word2Vec、GloVe、FastText等
# 嵌入层是一张查找表
# [1, sequence_length] -> [1, sequence_length, embedding_dim]
input_embeds = self.language_model.get_input_embeddings()(input_ids)
# 找到图片占位符的位置
if 'position_ids' in generate_kwargs:
pos_id=generate_kwargs['position_ids']
if self.attn_type:
if self.attn_type=='ulysses':
input_embeds=extract_local2(input_embeds,dist.get_rank(),dist.get_world_size())
attention_mask=extract_local2(attention_mask,dist.get_rank(),dist.get_world_size())
pos_id=extract_local2(pos_id,dist.get_rank(),dist.get_world_size())
elif self.attn_type=='ring':
former_shape = input_embeds.shape
input_embeds=extract_local(input_embeds,dist.get_rank(),dist.get_world_size())
attention_mask=extract_local(attention_mask,dist.get_rank(),dist.get_world_size())
pos_id=extract_local(pos_id,dist.get_rank(),dist.get_world_size())
generate_kwargs['position_ids']=pos_id
else:
if self.attn_type:
if self.attn_type=='ulysses':
input_embeds=extract_local2(input_embeds,dist.get_rank(),dist.get_world_size())
attention_mask=extract_local2(attention_mask,dist.get_rank(),dist.get_world_size())
elif self.attn_type=='ring':
former_shape = input_embeds.shape
input_embeds=extract_local(input_embeds,dist.get_rank(),dist.get_world_size())
attention_mask=extract_local(attention_mask,dist.get_rank(),dist.get_world_size())
outputs = self.language_model.generate(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
generation_config=generation_config,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
use_cache=True,
**generate_kwargs,
)
return outputs
def update_log(self, new_log_dict):
if not hasattr(self, 'log_dict'):
self.log_dict = {}
for key, value in new_log_dict.items():
if 'loss' in key:
if key not in self.log_dict:
self.log_dict[key] = value
else:
self.log_dict[key] += value
else:
# just copy it
self.log_dict[key] = value
def get_rope_pos_id(ret, num_tiles, dtype, rope_pos_id_version='default', position_id=None,boxes=None, orig_size=None,images=None,IMG_START_TOKEN='<img>',IMG_END_TOKEN='</img>',rope_pos_id_stride=None):
image_start_token_id = global_tokenizer.convert_tokens_to_ids(IMG_START_TOKEN)
image_end_token_id = global_tokenizer.convert_tokens_to_ids(IMG_END_TOKEN)
num_image_token=256
rope_pos_id_list = []
input_ids_0 = ret['input_ids'][0]
attention_mask_0 = ret['attention_mask'][0]
image_start_token_id_idxs = torch.where(input_ids_0 == image_start_token_id)[0]
image_end_token_id_idxs = torch.where(input_ids_0 == image_end_token_id)[0]
last_record_pos_id = -1
start_index = 0
for i in range(len(image_start_token_id_idxs)):
# 根据序列中的 IMG_START_TOKEN 出现的位置,锁定需要处理的图像 id 序列
# 注:这里的 IMG_START_TOKEN 和 IMG_END_TOKEN 应当与文本的处理方式相同
box = boxes[i]
image = images[i]
rope_pos_id_pre = attention_mask_0[start_index:image_start_token_id_idxs[i] + 1].long().cumsum(-1) - 1 + (last_record_pos_id + 1) # 从处理好的序列的最后一个 global id 开始 count
rope_pos_id_pre.masked_fill_(attention_mask_0[start_index:image_start_token_id_idxs[i] + 1] == 0, 1)
rope_pos_id_list.append(rope_pos_id_pre)
last_record_pos_id = rope_pos_id_pre[-1].long()
num_tile = num_tiles[i]
num_sub_imgs = num_tile - 1
is_last = (i == len(image_start_token_id_idxs) - 1)
if rope_pos_id_version == 'v0':
# 子图为小数,且不管多少个子图,其分配的总 global id 跨度为1;缩略图单独分配完整的,跨度为 1的 global id. Example:
# start_id = 100; 100 - 101 (分给 4 * 256),子图数目为4; 101 - 102 (分给 256) 缩略图
if num_sub_imgs > 0:
split_img_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + 1, (num_tile - 1) * num_image_token + 1)[1:].to(dtype=dtype) # 小数数值的 tensor 作为变换的数据取值
origin_split_img_id_idxs = split_img_id_idxs
############################## 进行位置变换 ##############################
# 先计算第一个子图对应 index
rearange_idx_list = []
rearange_idx_list_list = []
base_index_list = []
num_img_token_in_length = int(num_image_token ** 0.5)
num_patch_width = int(box[-1][2] // box[0][2])
num_patch_height = int(box[-1][3] // box[0][2])
assert num_patch_width * num_patch_height == len(box)
num_total_patch_width_token = num_patch_width * num_img_token_in_length
num_total_patch_height_token = num_patch_height * num_img_token_in_length
assert num_total_patch_width_token * num_total_patch_height_token == num_sub_imgs * num_image_token, (num_total_patch_width_token * num_total_patch_height_token, num_sub_imgs * num_image_token)
for k in range(num_image_token):
map_idx = (k // num_img_token_in_length) * num_total_patch_width_token + (k % num_img_token_in_length)
base_index_list.append(map_idx)
# 计算其他子图对应第一个子图的 offset
for k in range(num_sub_imgs):
patch_row = k // num_patch_width
patch_col = k % num_patch_width
offset = patch_row * (num_image_token * num_patch_width) + patch_col * num_img_token_in_length
# print(f'{k=}, {offset=}')
dst_index_list = [base_index + offset for base_index in base_index_list]
rearange_idx_list.extend(dst_index_list)
rearange_idx_list_list.append(dst_index_list)
############################## plot 验证 ##############################
# img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in
# zip(image[:-1], box, rearange_idx_list_list)]
# self.eval_posid_by_plot(img_boxes, rope_pos_id_version, None)
# img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in
# zip(image[:-1], box, rearange_idx_list_list)]
# self.eval_posid_by_plot(img_boxes, rope_pos_id_version, split_img_id_idxs)
############################## rearrange ##############################
split_img_id_idxs = split_img_id_idxs[rearange_idx_list]
rope_pos_id_list.append(split_img_id_idxs)
thumbnail_id_idxs = origin_split_img_id_idxs.reshape([num_image_token, -1]).to(dtype=dtype).mean(dim=1).view(-1)
rope_pos_id_list.append(thumbnail_id_idxs)
last_record_pos_id = origin_split_img_id_idxs[-1].long()
else:
thumbnail_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + 1,
num_image_token + 1)[1:].to(dtype=dtype) # 缩略图
rope_pos_id_list.append(thumbnail_id_idxs)
last_record_pos_id = (last_record_pos_id + 1).long()
# 验证是否能够恢复为等差数列
if num_tile > 1:
gt_pos_id = torch.linspace(last_record_pos_id - 2, last_record_pos_id - 1, (num_tile - 1) * num_image_token + 1)[1:].to(dtype=dtype)
# self.eval_posid_by_rearange(box, rope_pos_id_list, gt_pos_id, num_tile, dtype, is_last)
elif rope_pos_id_version == 'v1':
# 子图为小数,若有 N 个子图,其分配的总 global id 跨度为 N;缩略图单独分配完整的,跨度为 1的 global id. Example:
# start_id = 100; 100 - 104 (分给 4 * 256),子图数目为4; 104 - 105 (分给 256) 缩略图
if num_sub_imgs > 0:
split_img_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + num_tile - 1, (num_tile - 1) * num_image_token + 1)[1:].to(dtype=dtype) # 小数数值的 tensor 作为变换的数据取值
origin_split_img_id_idxs = split_img_id_idxs
############################## 进行位置变换 ##############################
# 先计算第一个子图对应 index
rearange_idx_list = []
rearange_idx_list_list = []
base_index_list = []
# rearange_split_img_id_idxs_list = []
num_img_token_in_length = int(num_image_token ** 0.5)
num_patch_width = int(box[-1][2] // box[0][2])
num_patch_height = int(box[-1][3] // box[0][2])
assert num_patch_width * num_patch_height == len(box)
num_total_patch_width_token = num_patch_width * num_img_token_in_length
num_total_patch_height_token = num_patch_height * num_img_token_in_length
assert num_total_patch_width_token * num_total_patch_height_token == num_sub_imgs * num_image_token, (
num_total_patch_width_token * num_total_patch_height_token, num_sub_imgs * num_image_token)
for k in range(num_image_token):
map_idx = (k // num_img_token_in_length) * num_total_patch_width_token + (
k % num_img_token_in_length)
base_index_list.append(map_idx)
# 计算其他子图对应第一个子图的 offset
for k in range(num_sub_imgs):
patch_row = k // num_patch_width
patch_col = k % num_patch_width
offset = patch_row * (
num_image_token * num_patch_width) + patch_col * num_img_token_in_length
# print(f'{k=}, {offset=}')
dst_index_list = [base_index + offset for base_index in base_index_list]
rearange_idx_list.extend(dst_index_list)
rearange_idx_list_list.append(dst_index_list)
# rearange_split_img_id_idxs_list.append(split_img_id_idxs[dst_index_list])
############################## plot 验证 ##############################
# img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in zip(image[:-1], box, rearange_idx_list_list)]
# self.eval_posid_by_plot(img_boxes, rope_pos_id_version, None)
# img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in zip(image[:-1], box, rearange_idx_list_list)]
# self.eval_posid_by_plot(img_boxes, rope_pos_id_version, split_img_id_idxs)
############################## rearrange ##############################
split_img_id_idxs = split_img_id_idxs[rearange_idx_list]
rope_pos_id_list.append(split_img_id_idxs)
# thumbnail_id_idxs = torch.linspace(last_record_pos_id + 1, last_record_pos_id + 2, num_image_token + 1)[1:].to(dtype=dtype) # 缩略图
thumbnail_id_idxs = origin_split_img_id_idxs.reshape([num_image_token, -1]).to(dtype=dtype).mean(dim=1).view(-1)
rope_pos_id_list.append(thumbnail_id_idxs)
last_record_pos_id = origin_split_img_id_idxs[-1].long()
else:
thumbnail_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + 1, num_image_token + 1)[1:].to(dtype=dtype) # 缩略图
rope_pos_id_list.append(thumbnail_id_idxs)
last_record_pos_id = (last_record_pos_id + 1).long()
# 验证是否能够恢复为等差数列
if num_tile > 1:
gt_pos_id = torch.linspace(last_record_pos_id - 1 - (num_tile - 1), last_record_pos_id - 1, (num_tile - 1) * num_image_token + 1)[1:].to(dtype=dtype)
# self.eval_posid_by_rearange(box, rope_pos_id_list, gt_pos_id, num_tile, dtype)
elif rope_pos_id_version == 'v2':
# 子图处理方式同文本(N 个子图分配 N * 256 个 global id);一个缩略图分配 256 * N 个的 global id.
# 子图处理同 v0, v1,也对 global id 根据空间关系做 arrange
if num_sub_imgs > 0:
split_img_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + num_sub_imgs * num_image_token, num_sub_imgs * num_image_token + 1)[1:].long() # long 数值的 tensor 作为变换的数据取值
last_id_for_split_img = last_record_pos_id + num_sub_imgs * num_image_token
origin_split_img_id_idxs = split_img_id_idxs
############################## 进行位置变换 ##############################
# 先计算第一个子图对应 index
rearange_idx_list = []
rearange_idx_list_list = []
base_index_list = []
# rearange_split_img_id_idxs_list = []
num_img_token_in_length = int(num_image_token ** 0.5)
num_patch_width = int(box[-1][2] // box[0][2])
num_patch_height = int(box[-1][3] // box[0][2])
assert num_patch_width * num_patch_height == len(box)
num_total_patch_width_token = num_patch_width * num_img_token_in_length
num_total_patch_height_token = num_patch_height * num_img_token_in_length
assert num_total_patch_width_token * num_total_patch_height_token == num_sub_imgs * num_image_token, (
num_total_patch_width_token * num_total_patch_height_token, num_sub_imgs * num_image_token)
for k in range(num_image_token):
map_idx = (k // num_img_token_in_length) * num_total_patch_width_token + (
k % num_img_token_in_length)
base_index_list.append(map_idx)
# 计算其他子图对应第一个子图的 offset
for k in range(num_sub_imgs):
patch_row = k // num_patch_width
patch_col = k % num_patch_width
offset = patch_row * (
num_image_token * num_patch_width) + patch_col * num_img_token_in_length
# print(f'{k=}, {offset=}')
dst_index_list = [base_index + offset for base_index in base_index_list]
rearange_idx_list.extend(dst_index_list)
rearange_idx_list_list.append(dst_index_list)
# rearange_split_img_id_idxs_list.append(split_img_id_idxs[dst_index_list])
############################## plot 验证 ##############################
# img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in
# zip(image[:-1], box, rearange_idx_list_list)]
# self.eval_posid_by_plot(img_boxes, rope_pos_id_version, None)
# img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in
# zip(image[:-1], box, rearange_idx_list_list)]
# self.eval_posid_by_plot(img_boxes, rope_pos_id_version, split_img_id_idxs)
############################## rearrange ##############################
split_img_id_idxs = split_img_id_idxs[rearange_idx_list]
rope_pos_id_list.append(split_img_id_idxs)
thumbnail_id_idxs = origin_split_img_id_idxs.reshape([num_image_token, -1]).to(dtype=dtype).mean(dim=1).view(-1)
rope_pos_id_list.append(thumbnail_id_idxs)
last_record_pos_id = origin_split_img_id_idxs[-1].long()
else:
thumbnail_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + num_image_token, num_image_token + 1)[1:].long() # 缩略图,和 default 处理一致
rope_pos_id_list.append(thumbnail_id_idxs)
last_record_pos_id = thumbnail_id_idxs[-1].long()
# 验证是否能够恢复为等差数列
if num_tile > 1:
gt_pos_id = torch.linspace(last_id_for_split_img - num_image_token * num_sub_imgs,
last_id_for_split_img,
num_sub_imgs * num_image_token + 1)[1:].long()
# self.eval_posid_by_rearange(box, rope_pos_id_list, gt_pos_id, num_tile, gt_pos_id.dtype)
elif rope_pos_id_version == 'v3':
# N 个子图共用跨度为 256 的 global id;一个缩略图正常分配 256 个 global id
if num_sub_imgs > 0:
split_img_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + num_image_token, num_sub_imgs * num_image_token + 1)[1:].to(dtype=dtype) # 小数数值的 tensor 作为变换的数据取值
origin_split_img_id_idxs = split_img_id_idxs
############################## 进行位置变换 ##############################
# 先计算第一个子图对应 index
rearange_idx_list = []
rearange_idx_list_list = []
base_index_list = []
# rearange_split_img_id_idxs_list = []
num_img_token_in_length = int(num_image_token ** 0.5)
num_patch_width = int(box[-1][2] // box[0][2])
num_patch_height = int(box[-1][3] // box[0][2])
assert num_patch_width * num_patch_height == len(box)
num_total_patch_width_token = num_patch_width * num_img_token_in_length
num_total_patch_height_token = num_patch_height * num_img_token_in_length
assert num_total_patch_width_token * num_total_patch_height_token == num_sub_imgs * num_image_token, (
num_total_patch_width_token * num_total_patch_height_token, num_sub_imgs * num_image_token)
for k in range(num_image_token):
map_idx = (k // num_img_token_in_length) * num_total_patch_width_token + (
k % num_img_token_in_length)
base_index_list.append(map_idx)
# 计算其他子图对应第一个子图的 offset
for k in range(num_sub_imgs):
patch_row = k // num_patch_width
patch_col = k % num_patch_width
offset = patch_row * (
num_image_token * num_patch_width) + patch_col * num_img_token_in_length
# print(f'{k=}, {offset=}')
dst_index_list = [base_index + offset for base_index in base_index_list]
rearange_idx_list.extend(dst_index_list)
rearange_idx_list_list.append(dst_index_list)
# rearange_split_img_id_idxs_list.append(split_img_id_idxs[dst_index_list])
############################## plot 验证 ##############################
# img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in
# zip(image[:-1], box, rearange_idx_list_list)]
# self.eval_posid_by_plot(img_boxes, rope_pos_id_version, None)
# img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in
# zip(image[:-1], box, rearange_idx_list_list)]
# self.eval_posid_by_plot(img_boxes, rope_pos_id_version, split_img_id_idxs)
############################## rearrange ##############################
split_img_id_idxs = split_img_id_idxs[rearange_idx_list]
rope_pos_id_list.append(split_img_id_idxs)
thumbnail_id_idxs = origin_split_img_id_idxs.reshape([num_image_token, -1]).to(dtype=dtype).mean(dim=1).view(-1)
rope_pos_id_list.append(thumbnail_id_idxs)
last_record_pos_id = origin_split_img_id_idxs[-1].long()
else:
thumbnail_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + num_image_token, num_image_token + 1)[1:].to(dtype=dtype) # 缩略图,和 default 处理一致
rope_pos_id_list.append(thumbnail_id_idxs)
last_record_pos_id = thumbnail_id_idxs[-1].to(dtype=dtype)
# 验证是否能够恢复为等差数列
if num_tile > 1:
gt_pos_id = torch.linspace(last_record_pos_id - num_image_token - num_image_token,
last_record_pos_id - num_image_token,
num_sub_imgs * num_image_token + 1)[1:].to(dtype=dtype)
# self.eval_posid_by_rearange(box, rope_pos_id_list, gt_pos_id, num_tile, gt_pos_id.dtype)
elif rope_pos_id_version == 'v4':
# stride 是可变长的
assert rope_pos_id_stride is not None, 'when rope_pos_id_version == v4, rope_pos_id_stride should not be None'
if num_sub_imgs > 0:
num_sub_image_tokens = num_image_token * num_sub_imgs
split_img_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + rope_pos_id_stride, num_sub_imgs * num_image_token + 1)[1:].to(dtype=dtype) # 小数数值的 tensor 作为变换的数据取值
assert len(split_img_id_idxs) == num_sub_image_tokens
origin_split_img_id_idxs = split_img_id_idxs
############################## 进行位置变换 ##############################
# 先计算第一个子图对应 index
rearange_idx_list = []
rearange_idx_list_list = []
base_index_list = []
# rearange_split_img_id_idxs_list = []
num_img_token_in_length = int(num_image_token ** 0.5)
num_patch_width = int(box[-1][2] // box[0][2])
num_patch_height = int(box[-1][3] // box[0][2])
assert num_patch_width * num_patch_height == len(box)
num_total_patch_width_token = num_patch_width * num_img_token_in_length
num_total_patch_height_token = num_patch_height * num_img_token_in_length
assert num_total_patch_width_token * num_total_patch_height_token == num_sub_imgs * num_image_token, (
num_total_patch_width_token * num_total_patch_height_token, num_sub_imgs * num_image_token)
for k in range(num_image_token):
map_idx = (k // num_img_token_in_length) * num_total_patch_width_token + (
k % num_img_token_in_length)
base_index_list.append(map_idx)
# 计算其他子图对应第一个子图的 offset
for k in range(num_sub_imgs):
patch_row = k // num_patch_width
patch_col = k % num_patch_width
offset = patch_row * (num_image_token * num_patch_width) + patch_col * num_img_token_in_length
# print(f'{k=}, {offset=}')
dst_index_list = [base_index + offset for base_index in base_index_list]
rearange_idx_list.extend(dst_index_list)
rearange_idx_list_list.append(dst_index_list)
# rearange_split_img_id_idxs_list.append(split_img_id_idxs[dst_index_list])
############################## plot 验证 ##############################
# img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in
# zip(image[:-1], box, rearange_idx_list_list)]
# self.eval_posid_by_plot(img_boxes, rope_pos_id_version, None)
# img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in
# zip(image[:-1], box, rearange_idx_list_list)]
# self.eval_posid_by_plot(img_boxes, rope_pos_id_version, split_img_id_idxs)
############################## rearrange ##############################
split_img_id_idxs = split_img_id_idxs[rearange_idx_list]
rope_pos_id_list.append(split_img_id_idxs)
thumbnail_id_idxs = origin_split_img_id_idxs.reshape([num_image_token, -1]).to(dtype=dtype).mean(dim=1).view(-1)
rope_pos_id_list.append(thumbnail_id_idxs)
last_record_pos_id = origin_split_img_id_idxs[-1].long()
else:
thumbnail_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + num_image_token, num_image_token + 1)[1:].to(dtype=dtype) # 缩略图,和 default 处理一致
rope_pos_id_list.append(thumbnail_id_idxs)
last_record_pos_id = thumbnail_id_idxs[-1].to(dtype=dtype)
elif rope_pos_id_version == 'v5':
assert rope_pos_id_stride is not None, 'when rope_pos_id_version == v5, self.rope_pos_id_stride should not be None'
small_stride = rope_pos_id_stride / num_image_token
# split_img_id_idxs = torch.arange(last_record_pos_id, last_record_pos_id + small_stride * (num_image_token * num_tile + 1), small_stride)[1:].to(dtype=dtype)
split_img_id_idxs = torch.linspace(last_record_pos_id,last_record_pos_id+small_stride*(num_image_token * num_tile ),(num_image_token * num_tile + 1))[1:].to(dtype=dtype)
rope_pos_id_list.append(split_img_id_idxs)
last_record_pos_id = torch.ceil(split_img_id_idxs[-1]).long()
elif rope_pos_id_version == 'v6':
random_from=[1,2,4,8,16,32,64,128,256]
rope_pos_id_stride=random.choice(random_from)
small_stride = rope_pos_id_stride / num_image_token
# split_img_id_idxs = torch.arange(last_record_pos_id, last_record_pos_id + small_stride * (num_image_token * num_tile + 1), small_stride)[1:].to(dtype=dtype)
split_img_id_idxs = torch.linspace(last_record_pos_id,last_record_pos_id+small_stride*(num_image_token * num_tile ),(num_image_token * num_tile + 1))[1:].to(dtype=dtype)
rope_pos_id_list.append(split_img_id_idxs)
last_record_pos_id = torch.ceil(split_img_id_idxs[-1]).long()
elif rope_pos_id_version == 'default':
# baseline
# 无特殊处理的做法
split_img_id_idxs = torch.linspace(last_record_pos_id,
last_record_pos_id + (num_tile - 1) * num_image_token,
(num_tile - 1) * num_image_token + 1)[1:].to(dtype=dtype) # 子图
rope_pos_id_list.append(split_img_id_idxs)
thumbnail_id_idxs = torch.linspace(last_record_pos_id + (num_tile - 1) * num_image_token,
last_record_pos_id + num_tile * num_image_token,
num_image_token + 1)[1:].to(dtype=dtype) # 缩略图
rope_pos_id_list.append(thumbnail_id_idxs)
last_record_pos_id = (last_record_pos_id + num_tile * num_image_token).long()
else:
raise NotImplementedError(f'not implement for {rope_pos_id_version}')
try:
start_index = image_start_token_id_idxs[i] + num_tile * num_image_token + 1
assert input_ids_0[start_index] == image_end_token_id # 下一次迭代的开头应该是 IMG_END_TOKEN
assert start_index == image_end_token_id_idxs[i] # 下一次迭代的开头应该是 IMG_END_TOKEN
except:
import ipdb
ipdb.set_trace()
if image_end_token_id_idxs[-1] != input_ids_0.shape[0] - 1:
# 末尾还有待处理的非图像 id 的情况
assert image_end_token_id_idxs[-1] == start_index # 应当从最后一个 IMG_END_TOKEN 开始
rope_pos_id_pre = attention_mask_0[start_index:].long().cumsum(-1) - 1 + (last_record_pos_id + 1)
rope_pos_id_pre.masked_fill_(attention_mask_0[start_index:] == 0, 1)
rope_pos_id_list.append(rope_pos_id_pre)
rope_pos_id_list=[_.to('cpu') for _ in rope_pos_id_list]
rope_pos_id = torch.cat(rope_pos_id_list).to(dtype=dtype)
if rope_pos_id_version == 'default':
rope_pos_id = rope_pos_id.long() # 不做特殊处理的 rope_pos_id 应当等于 position_ids
assert torch.equal(rope_pos_id, position_id.to(rope_pos_id.device)), (rope_pos_id, position_id.to(rope_pos_id.device))
assert torch.allclose(rope_pos_id, position_id.to(rope_pos_id.device), atol=1e-32)
assert rope_pos_id.shape == input_ids_0.shape
return list(rope_pos_id.numpy())