Model Card for Model ID
RoLlama2 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the chat 7B model. Links to other models can be found at the bottom of this page.
Model Details
Model Description
OpenLLM represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
- Developed by: OpenLLM-Ro
- Language(s): Romanian
- License: cc-by-nc-4.0
- Finetuned from model: RoLlama2-7b-Base
Model Sources
- Repository: https://github.com/OpenLLM-Ro/llama-recipes
- Paper: https://arxiv.org/abs/2405.07703
Intended Use
Intended Use Cases
RoLlama2 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
Out-of-Scope Use
Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
How to Get Started with the Model
Use the code below to get started with the model.
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama2-7b-Chat")
model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama2-7b-Chat")
instruction = "Care este cel mai înalt vârf muntos din România?"
chat = [
{"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
{"role": "user", "content": instruction},
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False)
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
outputs = model.generate(input_ids=inputs, max_new_tokens=128)
print(tokenizer.decode(outputs[0]))
Benchmarks
Model | Average | ARC | MMLU | Winogrande | HellaSwag | GSM8k | TruthfulQA |
---|---|---|---|---|---|---|---|
Llama-2-7b-chat | 36.84 | 37.03 | 33.81 | 55.87 | 45.36 | 4.90 | 44.09 |
RoLlama2-7b-Instruct | 45.71 | 43.66 | 39.70 | 70.34 | 57.36 | 18.78 | 44.44 |
RoLlama2-7b-Chat | 43.82 | 41.92 | 37.29 | 66.68 | 57.91 | 13.47 | 45.65 |
Romanian MT-Bench
Model | Average | 1st turn | 2nd turn | Answers in Ro |
---|---|---|---|---|
Llama-2-7b-chat | 1.08 | 1.44 | 0.73 | 45 / 160 |
RoLlama2-7b-Instruct | 3.86 | 4.68 | 3.04 | 160 / 160 |
RoLlama2-7b-Chat | TBC | TBC | TBC | TBC |
RoCulturaBench
Model | Score | Answers in Ro |
---|---|---|
Llama-2-7b-chat | 1.21 | 33 / 100 |
RoLlama2-7b-Instruct | 3.77 | 160 / 160 |
RoLlama2-7b-Chat | TBC | TBC |
RoLlama2 Model Family
Citation
@misc{masala2024openllmrotechnicalreport,
title={OpenLLM-Ro -- Technical Report on Open-source Romanian LLMs},
author={Mihai Masala and Denis C. Ilie-Ablachim and Dragos Corlatescu and Miruna Zavelca and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
year={2024},
eprint={2405.07703},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2405.07703},
}
- Downloads last month
- 164
Model tree for OpenLLM-Ro/RoLlama2-7b-Chat
Evaluation results
- Average on OpenLLM-Ro/ro_arc_challengeself-reported41.920
- 0-shot on OpenLLM-Ro/ro_arc_challengeself-reported39.590
- 1-shot on OpenLLM-Ro/ro_arc_challengeself-reported41.050
- 3-shot on OpenLLM-Ro/ro_arc_challengeself-reported42.420
- 5-shot on OpenLLM-Ro/ro_arc_challengeself-reported42.160
- 10-shot on OpenLLM-Ro/ro_arc_challengeself-reported43.360
- 25-shot on OpenLLM-Ro/ro_arc_challengeself-reported42.930