sylwia-kuros's picture
Add disclaimer
f00d827 verified
|
raw
history blame
3.09 kB
---
license: apache-2.0
language:
- en
---
# Mistral-7b-Instruct-v0.1-int8-ov
* Model creator: [Mistral AI](https://huggingface.co/mistralai)
* Original model: [Mistral-7b-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
## Description
This is [Mistral-7b-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT8 by [NNCF](https://github.com/openvinotoolkit/nncf).
## Quantization Parameters
Weight compression was performed using `nncf.compress_weights` with the following parameters:
* mode: **INT8_ASYM**
For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html)
## Compatibility
The provided OpenVINO™ IR model is compatible with:
* OpenVINO version 2024.1.0 and higher
* Optimum Intel 1.16.0 and higher
## Running Model Inference
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
```
pip install optimum[openvino]
```
2. Run model inference:
```
from transformers import AutoTokenizer
from optimum.intel.openvino import OVModelForCausalLM
model_id = "OpenVINO/mistral-7b-instrcut-v0.1-int8-ov"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = OVModelForCausalLM.from_pretrained(model_id)
messages = [
{"role": "user", "content": "What is your favourite condiment?"},
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
{"role": "user", "content": "Do you have mayonnaise recipes?"}
]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt")
outputs = model.generate(inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).
## Limitations
Check the original model card for [limitations](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1#limitations).
## Legal information
The original model is distributed under [Apache 2.0](https://choosealicense.com/licenses/apache-2.0/) license. More details can be found in [original model card](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1).
## Disclaimer
Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.